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Abstract

How much information about financial institutions’ balance sheets should regulators pass on to

the market? To prevent inefficient default, the optimal disclosure policy imposes transparency

for firms with weak fundamentals and opacity, otherwise. Strategic complementarities are exac-

erbated by financial constraints and induce a preference for granular disclosures. Transparency

increases with the volume of nonperforming assets, the maturity mismatch between assets and

liabilities, and the deterioration of liquidity buffers. Interestingly, the anticipation of future

disclosures can backfire and prove worse than laissez-faire. The optimal policy is robust to in-

vestors’ adversarial coordination, asymmetric information, and to the firm’s strategic reaction

to regulation.
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1 Introduction

“Speak clearly, if you speak at all; carve every word before you let it fall.”

Oliver Wendell Holmes Sr.

Information plays a key role in financial markets. Market participants routinely gather infor-

mation from private and public sources and make investments decisions based on their findings.

Information is especially critical for investors in institutions facing financial constraints, as the

stakes are typically high and the prospects of these institutions directly depend on the investors’

strategic decisions. However, how much information about these financial institutions’ balance

sheets should a regulator pass on to the market? Public disclosures have the potential to restore

market confidence about troubled institutions;1 however, when not carefully designed, they risk

unintentionally catalyzing a crisis.

A key problem that a regulator faces in these situations is that she simultaneously speaks to

multiple audiences. For example, in the context regulatory disclosures, the information publicly

revealed about a given financial institution is of interest to investors concerned with the long-term

profitability of the institution’s assets (e.g., equity holders), short-term creditors (e.g., money market

mutual funds) concerned about the institution’s liquid funds, speculators interested in the fate of the

firm, or counterparties exposed to a potential default. An optimally designed regulatory disclosure

must necessarily account for the strategic reactions it induces in these multiple audiences.

The qualitative properties of optimal disclosures in the presence of multiple audiences is fun-

damentally different from the case of a homogenous audience. When addressing a single audience,

standard economic intuition suggests that the optimal policy should minimize the information dis-

closed and provide just enough information to induce the audience’s desired behavior (Myerson

(1982), Myerson (1986)). With multiple audiences, however, disclosures intended for a particular

audience are simultaneously observed by the rest of the market participants, generating an endoge-

nous market reaction. As a result, the optimal degree of transparency of such disclosures is no

longer clear.
1Many scholars and regulators have argued that disclosing information about the health of systemically important

banks during the global financial crisis, was a critical inflection point that restored market confidence by providing
investors with credible information about potential losses (Bernanke (2013), Hirtle and Lehnert (2015)).
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Stated differently, an often neglected but crucial ingredient in analyzing the optimal degree

of transparency of regulatory disclosures is the strategic interaction among the multiple types of

market participants concerned about the institution’s private information. This paper aims to shed

light on this issue and inform the debate on the optimal design of such disclosures.

I argue that the optimal level of transparency is directly linked to the degree of strategic comple-

mentarities among the market participants directly concerned with the institution’s fundamentals.

When investors’ incentives to pledge funds to the firm comove with other investors’ decisions to

provide financial support, then optimal regulatory disclosures aimed at maximizing efficiency (e.g.,

the flow of funds to solvent but temporary illiquid institutions) become transparent with respect to

the institution’s fundamentals. Intuitively, with strategic complementarities, there exists an endoge-

nous amplification effect associated with increasing the market’s perception of the firm’s financial

health. Improving the investors’ assessment of the firm’s fundamentals induces investors to pledge

more funds. These additional funds lead other investors to provide financial support, which feeds

back and induces yet more market participants to pledge more funds. Thus, the complementari-

ties between the investors induce an amplification mechanism that translates into a convex market

response in the perception of the firm’s fundamentals. These convexities imply that a regulator

concerned with maximizing efficiency strictly benefits from finer disclosure policies. More granular

disclosures increase the regulator’s (ex ante) expected payoff in the same manner as a risk-loving

decision maker benefits from adding variability to the relevant outcome.

Financial constraints exacerbate the complementarities among the financial institution’s multiple

audiences. When the difference between the funds the firm can raise on short notice (e.g., by selling

assets or pledging them as collateral) and the size of liabilities that may suddenly dry up (e.g.,

repo, commercial paper) grows small, investors become concerned about whether the firm will meet

its short-term obligations. Investors’ incentives to pledge funds then comove with other investors’

funding decisions. Indeed, observing other market participants pledge funds (e.g., by purchasing

the firm’s assets, by lending short-term funds, or by refraining from speculating against the firm),

increases each market participant’s own incentives to provide financial support.

To fix ideas, consider the following simple model. The economy consists of a firm, a regulator,

and two audiences: asset market investors and short-term creditors (henceforth, AM investors

and ST creditors). The firm has private information about two dimensions, namely, (i) the long-
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Figure 1: Persuading multiple Audiences.

term profitability of its assets and (ii) its liquidity position. Uncertainty about the fundamentals

is gradually resolved. While the profitability of the firm’s assets is determined early, the firm’s

liquidity is determined at a later stage after a shock (potentially) materializes. The timing reflects

the idea that the profitability of the firm’s assets depends on investment decisions made in the

past, whereas the firm’s liquidity is subject to shocks and may suddenly dry up. The regulator’s

technology allows her to design regulatory disclosures about the firm’s fundamentals.2

The first audience, AM investors, is directly interested in learning about the profitability of the

firm’s assets (e.g., the amount of nonperforming loans). The second audience, ST creditors, on

the other hand, is concerned with the firm’s ability to repay short-term debt. Nevertheless, AM

investors also care about disclosures concerning the firm’s liquidity, as such information affects ST

creditors’ decisions of whether to roll over the firm’s short-term debt. Given that ST creditors’

claims are senior to those of AM investors, the latter may be wiped out if ST creditors choose to

run. Therefore, AM investors are indirectly affected by disclosures about the firm’s liquidity. In

turn, ST creditors indirectly care about the profitability of the firm’s assets. Disclosures about this

dimension determine the funds the firm can raise from AM investors either via asset sales or with

collateralized borrowing.3 The optimal regulatory disclosure thus has a fixed-point structure in

that disclosures about each dimension (e.g., asset profitability) account not only for the reaction of

the audience who directly cares about that dimension (AM investors) but also for the endogenous
2As is standard in the information design literature, I assume that the regulator has commitment power and

chooses the information disclosure policy before observing the true realization of the firm’s fundamentals.
3Bolton et al. (2011) refer to the funds the firm is able to raise via asset sales or with collateralized borrowing as

outside liquidity and to the firm’s cash reserves as inside liquidity.
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reaction of the audiences who indirectly care about that dimension (ST creditors).

Using tools from the information design literature, I characterize the optimal public disclosure

policy (among all possible signal distributions) that maximizes the ex-ante probability that a solvent

firm survives. I show that when the profitability of the firm’s assets exceeds a threshold, the

optimal policy is opaque and minimizes the information passed on to the market. By contrast,

when the profitability of its assets falls below the threshold, the optimal policy is transparent and

provides granular information. Interestingly, the optimal policy contradicts the naive intuition that

to maximize the ex-ante probability of survival, the regulator should impose opacity for institutions

with poor fundamentals.

The asymmetric structure of the optimal policy stems from the strategic interaction of the two

audiences. When the profitability of the assets is low, the amplification mechanism described above

gains traction. Improving the perception about the profitability of the firm’s assets induces AM

investors to pay larger prices. The additional funds increase the probability that the firm survives

an eventual run by ST creditors. The higher resilience then induces AM investors to offer even

higher prices for the firm’s assets, and so forth. Thus, when the firm’s financial constraints are

stringent, the complementarities between the audiences gives rise to an amplification mechanism

that translates into a convex survival probability in the perceived profitability of the firm’s assets.

The regulator thus prefers transparent disclosures over coarser rules.

In contrast, when the profitability of the firm’s assets is high, the strategic complementarities

weaken, and the amplification mechanism fades. The firm may prevent default altogether by raising

sufficient funds to persuade ST creditors that it has enough liquidity buffers. Doing so dissipates

the complementarities because AM investors are no longer concerned about ST creditors’ behav-

ior. Using a transparent policy in this case does not help and, in fact, may reduce risk-sharing

among firms with heterogeneous asset qualities. Thus, when the profitability of the firm’s assets is

sufficiently high, optimally designed disclosures become opaque.

I show that the predictions of the baseline model extend to a fairly large class of economies

wherein the complementarities between market participants’ actions are sufficiently strong. In the

general model, the audiences may represent investors in different interconnected financial insti-

tutions. For example, these can be creditors of different banks with systemic risk exposures or

connected through the liquidity of the secondary market and the potential fire sales. The audiences
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can also capture a group of financial institutions (e.g., private investment funds, mutual funds)

financing one or multiple private companies whose success depends upon the diffusion of a new

technology (e.g., new payment technology) with positive adoption externalities. As long as the

audiences’ behavior comoves with the behavior of the other audiences, the optimal disclosure policy

will feature a dichotomy between transparency and opacity, for poor and favorable fundamentals,

respectively.

Interestingly, the optimal disclosure policy is robust to both (a) adversarial coordination among

the investors and (b) the financial institution’s agency. On the first point, I take a conservative

approach and assume that when multiple outcomes are consistent with equilibrium play, the audi-

ences coordinate on the most adversarial (equilibrium) market response from the perspective of the

regulator. This assumption captures the idea that when the regulator designs the disclosure policy,

she does not trust her ability to coordinate the market on her most preferred outcome. Instead, the

regulator is conservative and assumes that after disclosing the firm’s information, the audiences will

coordinate on the worst equilibrium profile. The optimal policy is thus conservative and accounts

for the worst-case scenario.

Second, I assume that the financial institution is strategic and reacts to the regulator’s disclo-

sures. After the regulator reveals some of the firm’s information to the market, the firm optimally

chooses its funding strategy to maximize profits. Optimal disclosures thus need to anticipate the

firm’s behavior and incorporate it into the design of the disclosure policy. Moreover, a financial in-

stitution with private information (arguably the more relevant case) may signal its residual private

information (i.e., information not disclosed by the regulator) by strategically choosing its funding

strategy. Indeed, in many applications of interest, the firm’s private information may be an im-

portant concern. In the case of banking, e.g., regulators and market participants alike pay close

attention to the bank’s superior information with respect to its opaque balance sheet (e.g., the

volume of nonperforming loans). The bank’s actions are then usually scrutinized and used as sig-

nals of its residual private information. I show that the optimal policy is robust to these signaling

incentives. The optimal policy has the interesting feature that it induces no further revelation of

the firm’s private information to the market.

In the last part of the paper, I enrich the model and allow the regulator to use information as

the “policy tool of last resort.” In addition to the regulatory disclosures implemented in advance
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to foster efficiency, the regulator can also respond to liquidity shocks by disclosing information

about the institution’s liquidity buffers (similar in spirit to the 2009 SCAP). Perhaps surprisingly,

the promise of disclosing information about the bank’s liquidity can be self-defeating and backfire.

Absent future disclosures, the threat of a run imposes discipline on the institution, prompting it to

secure precautionary funds to avert default. In turn, when the market anticipates future disclosures,

its reaction becomes more optimistic. This, in turn, exacerbates the institution’s incentive to raise

less funds than socially optimal to avoid shareholder dilution. Having the technology to implement

such disclosures can become a policy trap and amplify the ex-ante probability of default.

The theory in this paper predicts that when an institution faces strong financial constraints

(e.g., a bank rolling over a large amount of short-term debt, an investment fund facing frequent

redemptions), it should be subject to regulatory disclosures displaying a negative relationship be-

tween the degree of transparency and the institution’s financial condition. The empirical literature

on regulatory disclosures has found regularities consistent with this prediction. In the context of

banks’ stress tests, there is evidence that institutions with weaker fundamentals (e.g., riskier assets,

larger quantities of nonperforming loans), are subject to more transparency than institutions with

stronger fundamentals (Morgan et al. (2014), Flannery et al. (2017), and Ahnert et al. (2018)). Chen

et al. (2022) find, in a recent paper, that Call Reports for US-based banks are more informative

for banks with worse-performing assets. Further, the paper’s predictions align with the observation

that, within the cross-section of financial institutions, highly leveraged institutions, such as banks,

are subject to more rigorous disclosure requirements.

Furthermore, the optimal policy’s asymmetric treatment between bad and good news is broadly

consistent with the conservatism principle usually recommended by accounting standard-setters.

According to the dictum, financial institutions should record losses as soon as they learn about

them, whereas potential gains are to be recognized only after they materialize. A financial institution

adhering to this accounting standard is prone to disclose more granular information when its assets

perform poorly and to disclose coarser information otherwise, consistent with our insight. Thus,

the theory can provide a foundation for the widespread accounting practice.

The remainder of this paper is organized as follows. Below I complete the introduction with a

brief review of the pertinent literature. Section 2 presents the baseline model. Section 3 describes

the equilibrium concept and its properties taking the information disclosed by the regulator as given.
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Section 4 studies the optimal design or regulatory disclosures. Section 5.1 studies enrichments of

the baseline model to show how the predictions are robust to additional realistic frictions. Finally,

Section 6 extends the insights of the baseline model to a large class of economies. Omitted proofs

are provided in the Appendix or Online Appendix.

Related literature. This paper is related to several strands of the literature. The first strand

is the literature on regulatory disclosures. Close in spirit is Bouvard et al. (2015) who study dis-

closures under rollover risk. The regulator cannot ex-ante commit to her disclosures and chooses

between full transparency or full opacity for the whole banking system . Instead, I assume the

regulator can flexibly design the disclosure policy for each financial institution and commit to it

before examining the firm’s balance sheet. Faria-e Castro et al. (2016) study information disclosure

under runnable liabilities and asymmetric information and finds a monotonic relationship between

the government’s fiscal capacity and the regulatory disclosure’s level of transparency. Goldstein and

Leitner (2018) consider the problem of a regulator who seeks to facilitate risk-sharing among firms

with assets of heterogeneous qualities. Inostroza and Pavan (2023) follow an adversarial approach

and explore optimal disclosure policies with heterogeneously informed receivers. Orlov et al. (2023)

study macroprudential disclosures for firms with correlated exposures.4 Quigley and Walter (2023)

study how firms react to regulatory disclosures by voluntarily disclosing private information. In my

model, firms cannot disclose hard information but may signal information through their funding

strategy.

Consistent with the predictions in the paper, Dai et al. (2022) find that a regulator concerned

with financial stability prefers a transparent policy for systemic risk exposures, where arguably

strategic complementarities are strong, and an opaque policy for financial institutions’ idiosyncratic

exposures, where the strategic complementarities disappear. Similarly, Huang (2020) shows that

when disclosing information about institutions in a financial network, the optimal policy becomes

more opaque as the aggregate level of the fundamentals improves, which is consistent with the idea

that financial constraints relax.

My paper also contributes to the growing literature of optimal disclosures with multiple au-

diences. Malenko et al. (2021) study proxy advisors’ recommendations to two type of investors,
4Some recent contributions include Basak and Zhou (2020b), Ebert et al. (2020), Huang (2020) Leitner and

Williams (2023), Parlasca (2021), Parlatore and Philippon (2020).
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subscribers and nonsubscribers. Li et al. (2021) study how to induce heterogeneous responses from

homogeneously informed audiences in the context of an entry game. Bond and Zeng (2022) study

verifiable disclosures when the receiver’s preferences are uncertain. Alonso and Camara (2016a)

and Bardhi and Guo (2018) consider disclosures to a jury in a voting context. Li et al. (2023) and

Morris et al. (2020) study persuasion with multiple receivers in binary action, supermodular games.

Finally, this paper relates more broadly to the literature on information design. This literature

can be traced back to Myerson (1986). Recent developments include Kamenica and Gentzkow

(2011), Kamenica and Gentzkow (2016), and Ely (2017). Bergemann and Morris (2016a) and

Bergemann and Morris (2016b) characterize the set of outcome distributions that can be sustained

as Bayes-Nash equilibria under arbitrary information structures consistent with a given common

prior. Alonso and Camara (2016b) study public persuasion in a setting with multiple receivers with

heterogeneous priors. Basak and Zhou (2020a) and Doval and Ely (2017) study dynamic games in

which the regulator can control both the agents’ information and the timing of their actions.

2 Baseline Model

The economy consists of a financial institution, a regulator, and two audiences: Short-term (ST)

creditors and asset market (AM) investors. The financial institution may represent an intermediary

(e.g., a bank, an investment fund) or a corporation with a large amount of short-term debt. ST

creditors represent market participants who have already pledged funds to the financial institution

so that the latter invests the pool of funds and purchases assets. ST creditors may represent

(unsecured) depositors of a bank, investors in mutual funds, etc. AM investors, on the other hand,

are agents who can purchase the institutions’s assets or securities (e.g., shareholders). To fix ideas,

I refer to the financial institution as the bank, henceforth. The insights presented below extend to a

large class of environments where investors’ preferences display strategic complementarities. I defer

the general theory to Section 6.

Actions. There are 3 periods, t ∈ {0, 1, 2}. The bank has two assets: (i) a unit of a safe asset

(e.g., treasuries, MBS) and (ii) a unit of a risky and illiquid asset (e.g., a portfolio of loans, a venture

project).5 Both assets mature in period 2. The safe asset and the risky asset deliver observable
5The illiquidity of the asset captures the idea that the bank has a technology to monitor the asset that cannot be

easily transferred to external investors.
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stochastic cashflows θs = R > 1 and θr, respectively.

In period 0, to increase the liquid funds available in period 1, the bank sell claims on its risky

assets (i.e., securities) to the asset market composed of a continuum of competitive AM investors

on [0, 1]. These are investors interested in the long-term profitability of the bank’s assets. For each

claim on the bank’s future cash flows s (described below), each AM investor j ∈ [0, 1], proposes a

price pj ∈ R+.

In period 1, the bank may suffer a temporary liquidity shock that impairs the safe asset, turning

a fraction 1 − ω of the asset illiquid. Specifically, ω ∈ Ω ≡ [0, 1] represents the largest fraction

of the safe asset that the bank can liquidate during period 1 to repay early ST creditors. If the

bank liquidates a fraction, say ν ≤ ω, of its safe asset in period 1, it obtains ν units of funds. A

value of ω < 1 can be interpreted as the result of an unexpected liquidity shock that reduces the

amount of liquid funds available at t = 1 (e.g., haircuts imposed in the repo market). I assume that

the fraction of the safe asset that is not liquidated in period 1 becomes available in period 2; thus,

ω < 1 represents a temporary liquidity shock.6 ,7

On the liability side of the balance sheet, a mass one of ST creditors, uniformly distributed over

[0, 1], is endowed with a contract (d1, d2). Each ST creditor has a claim promising a payoff d1 if the

ST creditor redeems early in period 1 or equal to d2 if the ST creditor waits and redeems late in

period 2. These claims can be interpreted as uninsured deposits, and the decision to wait can be

regarded as rolling over the bank’s debt.8 ST creditors can reinvest the withdrawn funds elsewhere

and guarantee a return normalized to 1. For simplicity, I assume that ST creditors’ contract (d1, d2)

is exogenous.

Let ai ∈ {0, 1} denote the ST creditor i’s action, where ai = 1 represents withdrawing late, and

ai = 0 represents withdrawing early. I denote by A =
∫
aidi ∈ [0, 1] the measure of ST creditors

who withdraw late. Henceforth, I refer to the decision of redeeming early (resp., late) as running

(resp., pledging). I assume that at most a fraction 1 − A0 ∈ [0, 1] of ST creditors can run on the

bank (i.e., a fraction A0 of ST creditors always pledges). The fraction A0 represents the bank’s
6The banking literature usually assumes a penalty for liquidating assets early. I assume instead that a fraction of

the safe asset 1− ω fraction becomes completely illiquid (e.g., MBSs during the global financial crisis).
7This assumption is made for simplicity. A model where a 1− ω fraction of the safe asset is destroyed during the

interim period (i.e., a permanent liquidity shock) can be accommodated by assuming that x ≥ d1.
8In the case of investment funds, these claims represent shares, and the decision to redeem early captures the

choice of selling the funds’ shares. In that case, d1 represents the net asset value (NAV) of the fund.
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subordinated debt, which is less susceptible to runs. 9

Fundamentals. The fundamentals of the bank’s balance sheet are captured by the vector

ϑ⃗ ≡ (θr,θs,ω). The variable θr represents the risky asset’s future cashflow, drawn from the

absolutely continuous cdf Fr with support Xr = [x, x] ⊆ R+. The variable θs = R represents

the safe asset’s cashflow if held until period 2. In Section 6, I generalize and assume that all the

fundamentals variables are stochastic. The variable ω represents the liquidity of the safe asset and

is drawn from Fω ∈ ∆ [0, 1]. I assume that Fω is absolutely continuous over [0, 1) and that it has

a mass point at ω = 1 of size λ ∈ [0, 1). In other words, with probability λ the bank does not

suffer a liquidity shock and is perfectly liquid. This variable will play an important role in the

characterization of the optimal policy.10

Fund-raising Stage. In period 0, the bank sells a security s to AM investors, which corresponds

to a claim on the risky asset’s future cashflows. The market then prices s according to the available

public information. Let P̄ (x) be the market value of a security promising to pay expected cashflows

x = E [s (θr)]. This pricing function is endogenously determined in Section 3 and we treat it as

given for the remainder of this section. If the bank raises P̄ (x) units of funds in period 0, then the

amount of cash available to repay early withdrawals in period 1 is given by ω + P̄ (x).

Exogenous Information. There is gradual resolution of uncertainty. At t = 0, the risky

asset’s cashflow, θr, is drawn from Fr. The cashflow realization cannot be observed by any market

participant.11 The liquidity shock ω is drawn from Fω ∈ ∆ [0, 1] at the beginning of period 1 and

is only observed by the bank. The assumption of gradual resolution of uncertainty reflects the idea

that the profitability of the bank’s assets depends on investment decisions made in the past, whereas

the bank’s liquidity is subject to unexpected shocks and may suddenly change.

Bank’s Payoff. If the bank raises P = P̄ (E [s (θr)]) from AM investors, it survives as long as

the available funds are greater than its obligations, i.e., P+ω ≥ d1 ·(1−A). In such a case, the bank

reinvests the remaining cash and obtains a payoff of R(P +ω− d1 · (1−A)) at t = 2. Additionally,

the bank must also repay late ST creditors in period 2, each of whom has been promised an amount
9In the case of open-end funds, the fraction A0 represents an exogenous inflow of funds (as in Chen et al. (2010)).

For private investment funds, A0 may capture lock-up periods that prevent a fraction of investors from running.
10The assumption that θr and ω are independent does not mean that the bank’s liquidity and asset profitability

are uncorrelated. In fact, the amount of funds available at t = 1, P + ω, correlates with (θr,θs,ω); in the absence
of information frictions, banks with better assets are able to secure more liquid funds at short notice.

11I consider departures from this assumption in Section 5.1
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d2. I assume that (d1, d2) satisfy (a) d2 = Rd1,12 and (b) d2 ∈
[
θs,θs +RP̄ (E {θr})

)
. That is,

ST creditors that redeem late are promised a payment strictly smaller than the expected value of

the bank’s assets. These assumptions imply that if the bank does not default in period 1, it does

not default in period 2 either.13 I denote by R = 1 {P + ω ≥ d1 (1−A)} the bank’s fate. That is,

R = 0 captures the bank’s default an R = 1 the bank’s survival. Thus, the bank’s period 2 payoff

is given by

U
(
ϑ⃗, P,A, s

)
≡ {R (P + ω − d1 (1−A)) + θs (1− ω)− d2A+ θr − s (θr)}R

= {R (P − d1) + θs + θr − s (θr)}R. (1)

ST Creditors’ Payoffs. ST creditors choose between running and pledging. It is without

loss to focus on the differential payoff between the two actions. Let ∆uST(ϑ⃗, P,A) represent the

differential payoff between pledging and running. Then,

∆uST(ω, P,A) = b(ω, P,A) · 1 {P + ω < d1 (1−A)}+ g(ω, P,A) · 1 {P + ω ≥ d1 (1−A)}

where g(ω, P,A) ∈
[
g, ḡ
]
, b(ω, P,A) ∈

[
b, b̄
]
for all (ω, P,A), with g and b nondecreasing in (ω, P,A),

and g > 0 > b̄.

AM Investors’ Payoffs. The claims promised to AM investors are subordinated to those of ST

creditors.14 Hence, AM investors’ claims are repaid only if the bank avoids default. AM investors

are competitive and price the security to match its true value while accounting for the possibility

of default. This means that the price must satisfy

P =
E [s (θr)]

R
P [P + ω ≥ d1 (1−A)] .

For the analysis, it will be important to spell out AM investors’ preferences (rather than just

behavior). One manner to induce this pricing function in a reduced-form model is with linear-
12This assumption can be rationalized with competitive banks. Banks offer a return similar to the one obtained

with the safe asset and myopically assume they will not be subject to runs.
13Indeed, the bank survives in period 1 if P + ω ≥ d1 (1−A). Thus, in period 2 the bank has the reinvested funds

R (P + ω − d1 (1−A)) plus the fraction of the safe asset that becomes available R (1− ω). Together, the two sources
of liquid funds are enough to cover the liabilities in period 2, d2A.

14I explore departures from this assumption in Section S1A of the Online Appendix.
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quadratic preferences, as in "beauty contests" models (Morris and Shin (2002)). The payoff of an

AM investor j ∈ [0, 1] who offers a price pj is then given by

ujAM

(
pj , ϑ⃗, P,A

)
= −

(
1− ρ

2

)(
s (θr)

R
R− pj

)2

− ρ

2
(P − pj)

2 , (2)

where ρ ∈ [0, 1] and P =
∫ 1
0 pjdj. That is, AM investors want to price the asset accounting for the

possibility of default (with intensity 1− ρ) and at the same time want to coordinate with the rest

of AM investors (with intensity ρ).15

Regulator’s Payoff. The regulator is concerned with economic efficiency and would like the

bank to survive only if the latter is solvent.

Definition 1. We say that the bank is ex-ante solvent if the market value of its assets at t = 0 is

larger than the value of its liabilities. Formally,

P̄ (E [θr]) + θs/R︸ ︷︷ ︸
=1

> d1. (3)

When inequality (3) holds, then from an ex-ante perspective, the value of the bank’s assets

exceeds that of its liabilities. However, because of the liquidity shock, the bank may be ex-ante

solvent but still become illiquid in period 1.

Let θ# represent the expected cashflow threshold above which the bank becomes ex-ante solvent.

That is, θ# is implicitly defined by P̄
(
θ#
)
= d1 − 1. The regulator’s ex-ante payoff is measurable

with respect to the bank’s fate R and expected profitability of the bank’s assets, and is given by

UR(E [θr] ,R) ≡ L0 (E [θr]) (1−R) +W0 (E [θr])R.

where W0 (E [θr]) ≡ τW max
{
E [θr]− θ#, 0

}
and L0 (E [θr]) ≡ τLmax

{
θ# − E [θr] , 0

}
, with τL ≥ 0

and τW > 0. This specification captures the idea that, consistent with efficiency, the regulator’s

payoff is positive and increasing in the value of the bank’s assets if the latter is solvent and avoids

default. In turn, we assume that the regulator obtains a weakly positive payoff when an insolvent

bank defaults and that this magnitude decreases as the profitability of the bank’s assets increases.16

15Because of the homogeneity in beliefs, the equilibrium outcomes are invariant in the specific value of ρ.
16Alternatively, there are large externalities from default (e.g., the bank is too interconnected to fail) and the
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Figure 2: Timing.

Regulatory Disclosures. The regulator has the technology to implement a disclosure regime

that publicly discloses information about the bank’s balance sheet to the market. The disclosure

policy may represent stress testing exercises designed and conducted by a central bank (e.g., CCAR

and DFAST), a report required by a financial supervisor (e.g., call reports filled by banks for the

FDIC, or form 13F filled by institutional investment managers for the SEC). Finally, it may also

represent an accounting standard designed by an accounting system (e.g., GAAP). The gradual

resolution of uncertainty implies that the regulator discloses information about the risky asset at

t = 0, but not about ω which materializes in period 1 (disclosures about ω are postponed until

Section 5.2). I denote by Γ the regulatory disclosure about the profitability of the bank’s risky asset

θr. A regulatory disclosure Γ = {Mr, π}, consists of an arbitrary set of possible announcements Mr

(e.g., scores, report) and a disclosure rule π : Xr → ∆Mr, that maps the realization of θr into a

(potentially stochastic) announcement mr ∈Mr.

Timing. The sequence of events is as follows:

Period 0. (a) The regulator designs the regulatory disclosure Γ and publicly announces it; (b)

θr is drawn from Fr; (c) the regulator publicly discloses information mr; and (d) The bank sells

security s ∈ S to AM investors at price P .

Period 1. (a) ω is drawn from Fω; (b) ST creditors decide whether to run; and (c) the bank

liquidates a fraction of safe asset, and its fate is determined.

Period 2. Conditional on the bank’s survival, (a) ST creditors that pledged funds are paid

back; (b) θr is realized and s(θr) is paid to AM investors, and the bank’s shareholders obtain

θr − s(θr).

regulator maximizes the probability of survival. I show in Section S2 of the Online Appendix that optimal regulatory
disclosures take the same form in such environments.
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3 Equilibrium

3.1 Robust Approach

I assume that renegotiation between ST creditors and the bank is not feasible. Given the speed

of events and the dispersion of ST creditors, renegotiation is, in most cases, unviable.17 I follow a

conservative approach and assume that when multiple action profiles are consistent with equilibrium

play, ST creditors coordinate on the most aggressive outcome consistent with the rationality of both

audiences (from the bank’s perspective).

The adversarial approach implies that ST creditors run on the bank whenever running is the

best response to everyone else running; that is, each ST creditor runs when E
[
∆uST(ϑ⃗, P,A0)

]
≤ 0.

Define K ≥ 0 as the minimum amount of funds needed to persuade ST creditors to pledge under

adversarial coordination. That is,

K ≡ inf
{
P ≥ 0 : E

[
∆uST(ϑ⃗, P,A0)

]
> 0
}
.

In other words, the bank can make it dominant for ST creditors to pledge funds by raising K . Let

A (P ) be the smallest measure of ST creditors willing to pledge given P . From the definition of K,

under adversarial coordination, we have that A(P ) = A0 + (1−A0) 1{P ≥ K}.

3.2 Fund-raising under Adverse Market Conditions

In period 1, the bank then enters the fund-raising stage by approaching AM investors and offering

security s. All securities with the same expected cashflows receive the same price P from AM

investors. Thus, I refer to the price associated with any security with x = E [s (θr)] as P̄ (x).

I assume that the distribution of the liquidity shock Fω is severe in that if the bank does not

raise additional funds, ST creditors find it optimal to run. Otherwise, the problem is uninteresting.

Assumption 1. E
[
∆uST(ϑ⃗, P = d1 − 1, A0)

]
< 0.

Assumption 1 captures the idea that the maturity mismatch is severe. In particular, the as-

sumption implies that if the bank does not raise any funds (i.e., P = 0), then all ST creditors able

to redeem early (i.e., a fraction 1−A0) choose to run under the adversarial equilibrium. Moreover,
17See, e.g., Landier and Ueda (2009) for a similar assumption.
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the assumption implies that a bank at the verge of insolvency (E [θr] = θ# as defined by (3)) faces

adversarial market conditions that prevent it from raising enough funds to avoid a run of short-term

funds. The assumption further implies that θ# < K and hence guarantees the existence of banks

that are solvent but that become illiquid after the liquidity shock materializes (E [θr] ∈
[
θ#,K

)
).

By the end of period 0, ST creditors observe the amount of funds raised and decide whether

to run. If the bank raises at least K, then no ST creditor runs, allowing the bank to survive

with certainty. On the other hand, if the bank raises less than K, then all ST creditors able to

redeem early (i.e., a fraction 1 − A0) run on the bank. The survival of the bank then depends

on the amount raised and on the realization of the liquidity shock ω. Define the function ω̄ (P ) ≡

max {d1 · (1−A (P ))− P, 0}, which identifies the cutoff for the liquidity shock below which the

bank defaults. Note that, by definition, ω̄ (P ) = 0 for any P ≥ K.

For any ρ ∈ [0, 1], the price that AM investors are willing to pay for a security with expected

cashflows x = E [s (θr)] is given by18

P̄ (x) ≡ sup
{
p ≥ 0 :

x

R
P [ω ≥ ω̄ (p)] ≥ p

}
. (4)

Let P ≡ max {d1 (1−A0)− 1, 0} represent the wedge between the short-term liabilities that can be

redeemed in period 1, d1 (1−A0), and the (maximal) amount of liquid funds that can be secured

by selling the safe asset in the absence of liquidity shock (i.e., ω = 1). In short, P represents the

volume of short-term liabilities that can not be met with the bank’s liquid funds even in the absence

of a shock and hence is a measure of the bank’s maturity mismatch.

Figure 3 provides some examples how the pricing function is determined. All panels assume the

case where P > 0 meaning that the maturity mismatch is large. Panel (a) shows the case where the

expected value of the security x = E [s (θr)] is low. AM investors price in the bank’s probability

of default. This process depresses the price AM investors are willing to pay, which makes a run of

ST creditors more likely. This further increases the probability of default, which translates into an

even lower price, and so forth. In this case the effect is so severe that the unique price consistent

with the rationality of AM investors is 0. Panel (b) shows the case where x = E [s (θr)] takes an
18When P = (x/R)P [ω ≥ ω̄ (P )] admits multiple solutions, P̄ (x) corresponds to the largest solution. This selection

can be microfounded by assuming that AM investors are competitive and the bank makes a take-it-or-leave-it (TIOLI)(
s, P̄ (E {s})

)
. The price is then the maximal price accepted by rational investors concerned with default risk.
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Figure 3: Determination of pricing function P̄ (x).

intermediate value jointly satisfying xλ/R > P and x/R < K. In this case, there is a strictly

positive price P̄ (x) ∈ (0, x/R) that accounts for default risk. Finally, panel (c) shows the case

where x = E [s (θr)] is large and such that x/R > K. In this case, the bank may prevent default

altogether by raising enough funds to prevent ST creditors from running. The security is thus not

subject to haircuts and P̄ (x) = x/R.

3.3 Equilibrium Concept

Let E
[
U
(
ϑ⃗, P,A, s

)]
be the bank’s expected utility when it sells security s, raises P from AM

investors and faces a mass A of pledging investors. Without the regulator’s intervention, the bank’s

payoff can be written as

E
[
U
(
ϑ⃗, P,A, s

)]
= E [(R (P − d1) + θs + θr − s (θr))1 {ω + P ≥ d1 · (1−A (P ))}]

= (R (P − d1 + 1) + E [θr − s (θr)])P [ω ≥ d1 · (1−A (P ))− P ] . (5)

I say that {s⋆, P ⋆, A⋆} is an equilibrium of the fund-raising game if: (a) s⋆ ∈ argmax
s

E
[
U
(
ϑ⃗, P ⋆, A⋆, s

)]
(Sequential Rationality); (b) P ⋆(s⋆) = P̄ (E [s⋆]) (Competitive Markets); and (c) A⋆ (P ) = A0 +

(1−A0) 1 {P ≥ K} , ∀P ≥ 0 (Adversarial Coordination).

3.4 Strategic Complementarities and Convexity

Below, I introduce an assumption that exacerbates the strategic complementarities between the

investors’ actions.
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Assumption 2. The prior distribution of ω, Fω, is concave over (max {d1 · (1−A0)−K, 0} , 1).

Assumption 2 reflects the idea that the bank’s liquidity constraints are severe. Intuitively, when

Fω is concave, low realizations of ω (and hence stringent liquidity shocks) become more likely to

occur. Severe liquidity constraints exacerbate the strategic complementarities between the two

audiences. When assumption 2 holds, AM investors believe that it is plausible that the bank faces a

massive run. The interaction of the two audiences then generates a negative feedback cycle as AM

investors price in the bank’s probability of default. This process depresses the price AM investors

are willing to pay for s, which makes a run of ST creditors more likely. This further increases the

probability of default, which translates into an even lower price, and so forth. Thus, when the

bank is liquidity-constrained, the audiences’ behaviors reinforce each other and may amplify the

probability of default.

More rigorously, let U j
AM (pj , P,A) ≡ E

[
ujAM

(
pj , ϑ⃗, P,A

)]
be the expected payoff of an arbi-

trary AM investor. The marginal benefit from pledging more funds is given by

∂

∂pj
U j

AM (pj , P,A) = (1− ρ)
E [s (θr)]

R
P [ω ≥ d1 (1−A)− P ] + ρP − pj , (6)

which is increasing in the aggregate level of financial support, as captured by (A,P ), and the

profitability of the asset as captured by E [s (θr)]. That is, the bank’s financial constraints induce

strategic complementarities within the set of AM investors and also across audiences, between AM

investor and ST creditors. Similarly, each ST creditor’s incentives to pledge funds comove with the

behavior of the rest of ST creditors and the AM investors’ price P . These economics properties

are standard assumptions in games with strategic complementarities.19 The main departure with

respect to the earlier models is that I do not impose restrictions in the AM investors’ actions (e.g.,

binary actions). The flexibility of allowing for investors’ different levels of support facilitates the

amplification mechanism to manifest. Indeed, AM investors pay a larger price for the security when

other investors also invest in the bank, which further increases the price they are willing to pay, and

so on, giving rise to the amplification in the market response.

Assumption 2 guarantees that the extent of strategic complementarities within and across au-

diences, as measured by the magnitude of ∂2

∂P∂pj
U j

AM (pj , P,A) and ∂2

∂A∂pj
U j

AM (pj , P,A), does not

19They are the analog to assumptions A1 and A2 in Morris and Shin (2006).
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Figure 4: Determination of probability of survival ϕ (x).

decrease over the critical region where P < K.20 Assumption 2 is thus a sufficient condition for

the strategic complementarities between the audiences not to dissipate. The next result shows that

when this assumption holds, the interaction of the two audiences induces an endogenous amplifi-

cation mechanism that makes the probability of survival convex in the market perception of the

profitability of the bank’s asset.

Define ϕ (x) as the probability that the bank survives conditional on selling a security with

expected cashflows x = E [s (θr)]. That is,

ϕ (x) ≡ P
[
ω ≥ ω̄

(
P̄ (x)

)]
= 1− Fω

(
ω̄
(
P̄ (x)

))
. (7)

Lemma 1 below shows that when assumption 2 holds, ϕ becomes convex over the critical region.

Proposition 1. Suppose that assumptions (1) and (2) hold. The function ϕ then satisfies:21

(a) ϕ (x) = 0 for any x < PR/λ.

(b) ϕ (x) = 1 for any x ≥ KR.

(c) If fω is continuously differentiable over [0, 1). Then, ϕ is convex over [PR/λ,KR) .

Figure 4 depicts the function ϕ (x) for different parameterizations. Panel (a) shows the case

where the maturity mismatch is contained as captured by P = 0. In this case, ϕ is convex over the
20Because of the discreet nature of ST creditors’ actions, I cannot measure the extent of strategic complementarities

with the same approach. Instead, I note that over the critical region, each ST creditor maintains their behavior.
21Note that KR > PR/λ. Indeed, assumption 1 implies that P̄ (KR) = K > P̄

(
θ#r
)
= d1 − 1 ≥ P = P̄

(
PR
λ

)
.

The result then follows from the monotonicity of P̄ .
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whole region [0,KR). Panel (b) captures the case where the size of short term liabilities is large

(P > 0). In this case, the function ϕ is globally monotone, strictly convex over [PR/λ,K) , and flat

elsewhere.

The convexity of ϕ over [PR/λ,K) follows from the interaction of the two audiences. Under

assumption 2, the incentives of each audience to pledge funds increase when the other audience

pledges more funds over the whole critical region. Intuitively, when the security expected cashflows

E [s (θr)] increase, the probability that the bank survives increases as the bank becomes resilient

to more stringent liquidity shocks and hence more resilient to a run by ST creditors. The larger

probability of survival feeds back and increases the price AM investors are willing to offer. The

higher price further increases the probability of survival, and so forth. As a result, in the absence of

additional forces, this amplification mechanism induces a convex probability of survival as a function

of the expected value of the bank’s security.

Conversely, when Fω is convex and therefore high levels of liquidity are more likely, an im-

provement in E [s (θr)] increases the probability of survival, P [ω ≥ ω̄ (P )], at a decreasing rate. If

the slow down is sufficiently strong, the amplification mechanism described above may dissipate. I

discuss the role of the prior Fω in detail in Section S1 of the Online Appendix.

3.5 Optimal Funding Strategy

Financial institutions optimally respond to regulation. In the current framework, the bank has

agency over its funding strategy. Robust regulatory disclosures should account for the financial

institution’s strategic response. To this end, we characterize the bank’s optimal funding strat-

egy at any possible continuation game after the regulatory disclosure Γ has publicly revealed any

announcement mr.

For any P ≥ 0, let φ (P ) ≡ P [ω ≥ d1 · (1−A (P ))− P ] be the probability of survival as a

function of P . In particular, this means that ϕ (x) = φ
(
P̄ (x)

)
. Let V (x;E [θr]) be the bank’s

payoff from issuing a security with expected cashflows x = E [s (θr)], when the expected cashflows

of the whole risky asset is E [θr]. That is,

V (x;E [θr]) ≡
(
P̄ (x)R−R (d1 − 1) + E [θr]− x

)
P
[
ω ≥ d1 ·

(
1−A

(
P̄ (x)

))
− P̄ (x)

]
.

=
(
P̄ (x)R−R (d1 − 1) + E [θr]− x

)
φ
(
P̄ (x)

)
.
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The bank’s problem reduces to issuing a security with expected value

x⋆ (E [θr]) ≡ argmax
x∈[0,E[θr]]

V (x;E [θr]) .

Let h (x) ≡ x
R (1− ϕ (x)) be the haircut associated with a security with expected cashflows

x = E [s (θr)], that is, the difference between the safe value of the security and the equilibrium

price that accounts for default risk. Recall that θ# represents the threshold above which the bank

becomes solvent and satisfies P̄
(
θ#
)
= d1 − 1.

Assumption 3. Either d1 (1−A0) ≤ 1 (i.e., P = 0) or22

h (PR/λ) > h(θ#). (8)

The assumption guarantees that a bank at the verge of insolvency (i.e., E [θr] = θ#), prefers to

maximize the funds raised from AM investors by selling the whole risky asset rather than just selling

the fraction PR/λ. Intuitively, under assumption (8), an illiquid bank at the verge of insolvency

(i.e., those E [θr] ∈
[
θ#,KR

)
) is aligned with the regulator and wants to secure as much funds as

necessary to avoid default.

The next result shows that any illiquid-yet-solvent bank (i.e., E [θr] ∈
[
θ#,KR

)
) optimally

chooses to sell the whole the risky asset. Conversely, any insolvent bank (i.e., E [θr] < θ#) prefers

not to raise funds.

Proposition 2. Suppose that assumptions (1) - (3) hold. Then, the bank’s optimal choice x⋆ (E [θr])

takes the form:23

x⋆ (E [θr]) =


0 if E [θr] < θ#

E [θr] if E [θr] ∈
[
θ#,KR

)
KR if E [θr] ≥ KR.

Proposition (2) shows that the bank and the regulator’s preferences are aligned in terms of the

optimal funding strategy. Provided that an illiquid bank at the verge of insolvency (i.e., E [θr] = θ#)

22A sufficient condition for h (PR/λ) > h
(
θ#
)

is that λ < d1(1−A0)−1
d1−1

1−Fω(1−d1A0)
−d1A0

which is satisfied, e.g., when λ or

A0 is sufficiently small.
23The fact that P̄

(
θ#
)
= d1 − 1 ≥ P = P̄ (PR/λ) implies that θ# ≥ PR/λ.
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wants to maximize the funds raised is enough to guarantee that all illiquid-yet-solvent banks do

want to the same. The proof shows that for any E [θr] ∈ [PR/λ,KR), the bank’s payoff V (·;E [θr])

is U-shaped over [PR/λ,E [θr]] and attains a maximum at the corners {PR/λ,E [θr]}. That is,

conditional on the bank raising strictly positive funds, it either sells the whole risky asset or a

security with expected cashflows x = PR/λ. A key step in the proof is the observation that the

bank’s payoff V (x;E [θr]) has increasing differences in (x;E [θr]) (i.e., V is supermodular). This

property implies that, if for some value E [θr] ∈ [PR/λ,KR] the bank prefers to sell the risky

asset rather than issuing a security with value x < E [θr], then any bank with expected cashflows

larger than E [θr] prefers to sell the risky asset rather than a security with value x. Assumption

(3) guarantees that a bank on the verge of insolvency sells the whole risky asset. Because of the

supermodularity property, this implies that all illiquid-yet-solvent banks (i.e., E [θr] ∈
[
θ#,KR

)
)

raise the maximal amount of funds to minimize the probability of default. One can dispense with

assumption (3) provided that the regulator can enforce recapitalizations.

4 Optimal Information Disclosure

The regulator can design mandatory disclosures that control the information about the bank’s

financial condition passed on to the market. In period 0, the regulator designs a regulatory disclosure

Γ = {Mr, π}, where Mr represents an arbitrary set of possible announcements (e.g., one of multiple

scores, a detailed report) and a disclosure policy π : Xr → ∆Mr, which maps the realization of θr

into a (potentially stochastic) announcement mr. This formulation is general and encompasses all

types of disclosures which are measurable with respect to the bank’s assets.

The optimal regulatory disclosure Γ⋆ accounts for the optimal responses of both audiences and

the bank’s funding strategy. We start from the observation that, any announcement mr = mr

disclosed with positive probability induces a posterior estimate of θr, E [θr|mr = mr]. Let GΓ be

the distribution of posterior estimates induced by Γ, i.e., the cdf of the random variable E [θr|mr].

Strassen’s theorem implies that, for any policy Γ, GΓ must be a mean-preserving contraction of

the prior Fr. Conversely, any mean-preserving contraction of the prior can be obtained with some

disclosure policy Γ. Thus, the regulator’s problem of maximizing over all possible disclosure policies

is equivalent to the more tractable problem of optimizing over all mean-preserving contractions of
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the prior (Dworczak and Martini (2019), Gentzkow and Kamenica (2016)).24

4.1 The Regulator’s Problem

For each announcement mr = mr, let θ̄r = E [θr|mr] represent the induced posterior estimate of

the risky asset’s cashflows. Proposition (2) implies that the bank optimally chooses to sell a fraction

x⋆
(
θ̄r
)

of the risky asset and secures P̄
(
x⋆
(
θ̄r
))

funds from AM investors. The regulator’s payoff

then becomes25

UR
⋆ (θ̄r) ≡ E

[
UR(θ̄r,ω, P

⋆, A⋆)
]
,

= E
[
L0

(
θ̄r
)
1
{
ω < ω̄

(
P̄
(
x⋆
(
θ̄r
)))}

+W0

(
θ̄r
)
1
{
ω ≥ ω̄

(
P̄
(
x⋆
(
θ̄r
)))}]

= L0

(
θ̄r
) (

1− ϕ
(
x⋆
(
θ̄r
)))

+W0

(
θ̄r
)
ϕ
(
x⋆
(
θ̄r
))
.

Using the fact that L0

(
θ̄r
)
= 0 for all θ̄r ≥ θ#, W0

(
θ̄r
)
= 0 for all θ̄r ≤ θ#, and the characterization

in Propositions (1) and (2), we thus have

UR
⋆ (θ̄r) =


L0

(
θ̄r
)
(1− ϕ (0)) if θ̄r < θ#

W0

(
θ̄r
)
ϕ
(
θ̄r
)
, if θ̄r ∈

[
θ#,KR

)
W0

(
θ̄r
)

if θ̄r ≥ KR.

The regulator’s problem thus reduces to

max
GΓ

∫ ∞

0

{
L0

(
θ̄r
) (

1− ϕ
(
x⋆
(
θ̄r
)))

+W0

(
θ̄r
)
ϕ
(
x⋆
(
θ̄r
))}

dGΓ
(
θ̄r
)

s.t: Fr ⪰MPS G
Γ.

24Let F and G be distribution functions with support in X ⊆ R. We say that G is a mean-preserving contraction
of F (alternatively, F ⪰MPS G), if

∫
X
u(x)dF (x) ≥

∫
X
u(x)dG(x), for any convex function u in X.

25The regulator’s payoffs L0 and W0 from the bank’s default and survival depend on the ex ante value of the bank’s
assets θ̄r = E (θr|mr) (i.e., whether the bank is ex ante solvent) and not the amount of funds raised x⋆

(
θ̄r
)
. The

latter determines the fate of the bank.
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Figure 5: Regulator’s payoff as a function of the induced posterior estimate θ̄r.

4.2 Transparency and Opacity

The next theorem shows that the optimal regulatory disclosure Γ⋆ is transparent for banks with

nonperforming risky assets, and opaque for banks with highly profitable risky assets. Formally, there

exists a cutoff θ̂r such that, any bank with a risky asset for which θr<θ̂r, the regulator fully discloses

the realization θr. In contrast, all cashflow realizations θr ≥ θ̂r are pooled together under the same

announcement, thereby minimizing the information passed on to the market. The cutoff θ̂r is chosen

such that the posterior expectation induced by learning that θr ≥ θ̂r, satisfies E
[
θr|θr ≥ θ̂r

]
= KR.

Thus, θ̂r corresponds to the lowest cutoff that allows the bank to raise sufficient capital to persuade

ST creditors to keep pledging funds to bank.

Theorem 1. Suppose that assumptions (1) - (3) hold. Then, the optimal policy Γ⋆ is fully transpar-

ent for any θr < θ̂r, and fully opaque for θr ≥ θ̂r, where θ̂r is implicitly defined by E
[
θr|θr ≥ θ̂r

]
=

KR.

The optimal disclosure policy Γ⋆ pools all profitability levels above θ̂r so that the induced

posterior expectation satisfies E
[
θr|θr ≥ θ̂r

]
= KR and, hence, ST creditors are dissuaded from

running. Using a more transparent disclosure policy for high values of θr destroys risk-sharing

opportunities among financial institutions with heterogeneous assets. In fact, under the opaque

announcement, all banks whose risky assets’ profitability is above θ̂r are spared an inefficient run

by ST creditors. Enjoying risk-sharing opportunities by means of more opaque policies is usually
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referred to as the Hirshleifer effect (Hirshleifer (1971)) and has already been discussed in the context

of regulatory disclosures (Goldstein and Leitner (2018)).

When θr falls below θ̂r, the optimal policy becomes fully transparent. This result is novel.

The intuition is that, as explained in Subsection 3.4, there is an endogenous amplification effect

associated with increasing the market perception of the profitability of the bank’s risky asset that

originates from the strategic complementarities between the two audiences. Indeed, the interaction

of both audiences generates a virtuous cycle that convexifies the probability of survival ϕ (·) as a

function of the profitability of the asset. When the profitability of the asset is low and ϕ (·) is (locally)

convex, the regulator prefers to separate different profitability levels θr under different signals similar

to a risk-loving agent who prefers to separate different states under different realizations rather than

pooling them together. In other words, when ϕ is convex, a policy that induces dispersion of posterior

estimates dominates those inducing a contraction of posteriors. Perhaps surprisingly, the optimal

policy that maximizes the probability of survival of solvent institutions is transparent for financial

institutions with poor fundamentals.

When the regulator can enforce recapitalizations requirements, one can dispense with assumption

(3). Indeed, that assumption guarantees that solvent-illiquid banks are aligned with the regulator

and maximize the amount of funds raised to prevent default. The regulator can enforce this behavior

by preventing the bank’s shareholders from enjoying the bank’s profits unless sufficient funds are

raised. This funding requirement is consistent with the practice behind stress tests (CCAR) and

with the idea of capital conservation buffers recommended by Basel III, which restrict dividends as

a function of the bank’s capital adequacy.

The optimal policy’s dichotomy between transparency (for poor fundamentals) and opacity

(for strong fundamentals) extends to the case where the financial institution is too big or too

interconnected to fail, and induces large externalities in case of default. In that case, the regulator

wants to maximize the institution’s probability of survival, and conditional on survival, may want

to minimize the possibility of inefficient runs. In Section S2 of the Online Appendix, I show the

version of the theorem when the regulator has such preferences.
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4.3 Monotone Comparative Statics

Theorem 1 shows that the optimal policy is fully characterized by the threshold θ̂r below which

the regulator perfectly discloses the risky asset’s profitability. I show next that as the bank’s

financial condition deteriorates, the optimal policy becomes more transparent. By Theorem 1, the

informativeness of the optimal policy is formally captured by the magnitude of θ̂r. That is, as θ̂r

increases, the regulatory disclosure becomes more transparent.26

Recall that θ̂r is implicitly defined by E
[
θr|θr ≥ θ̂r

]
= KR. This definition implies that θ̂r is

determined (among other things) by Fr, Fω, d1 (1−A0), that is, by the profitability of the bank’s

risky assets, the bank’s liquidity buffers, and the maturity mismatch between assets and liabilities.

Indeed, the threshold K above which ST creditors are dissuaded from running depends on the

distribution of liquid funds Fω and the size of liabilities d1 (1−A0). The expectation of θr in turn

is fully determined by Fr. Let θ̂r (Fr, Fω, d1 (1−A0)) be the threshold characterizing the regulator’s

optimal disclosure policy.

Lemma 1. Suppose that assumptions (1) - (3) hold. Then,

(a) If F̃ω ⪰MLRP Fω, then θ̂r

(
F̃ω, Fr, d1 (1−A0)

)
≤ θ̂r (Fω, Fr, d1 (1−A0)),

(b) If F̃r ⪰MLRP Fr, then θ̂r

(
Fω, F̃r, d1 (1−A0)

)
≤ θ̂r (Fω, Fr, d1 (1−A0)),

(c) If d̃1(1− Ã0) ≥ d1(1−A0), then θ̂r

(
Fω, Fr, d̃1(1− Ã0)

)
≥ θ̂r (Fω, Fr, d1 (1−A0)).

Lemma (1) implies that as the bank’s financial condition deteriorates, either because of (a) a

depletion of its liquidity buffers, (b) a deterioration of the performance of its assets, or (c) an increase

in the maturity mismatch, the regulator optimally responds by implementing more transparent

disclosures. Intuitively, when the bank’s liquidity condition deteriorates or the maturity mismatch

increases, the bank needs to raise a larger amount of funds to persuade ST creditor to pledge (i.e., K

increases). The region over which strategic complementarities induce the amplification mechanism

thus widens, leading to a more transparent policy. In turn, when the profitability of the bank’s

risky asset worsens, the regulator assigns more probability mass to low realizations of θr and prefers

to extend the region where she imposes a transparent regime. I argue below that these predictions

resonate with empirical findings.
26The distribution of posterior estimates under the optimal policy becomes larger under the MPS order.
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4.4 Empirical Predictions

The theory in the paper predicts that when financial institutions face strong financial constraints

(e.g., a bank rolling over a large amount of short-term debt, an investment fund facing frequent re-

demptions), it should be subject to regulatory disclosures displaying a negative relationship between

the degree of transparency and the bank’s financial condition. The empirical evidence on regulatory

disclosure identifies regularities consistent with these predictions. In the context of stress tests in

the banking sector, the literature has found evidence that institutions with weaker fundamentals

(e.g., riskier assets, more leverage, larger quantities of nonperforming loans), are subject to more

transparency than institutions with stronger fundamentals (Morgan et al. (2014), Flannery et al.

(2017), and Ahnert et al. (2018)). In the context of Call Reports, Chen et al. (2022) find that for

US-based banks, disclosures are more informative for banks with worse performing assets.

The underlying assumption for the regulatory disclosures described in the paper is that the

regulator can commit to them. This might be a strong assumption for some applications of interest.

The predictions of the model will most likely not fit the empirical patterns in that case.

A financial institution can nevertheless commit to disclose information by adhering to an ac-

counting standard to report its financial information. The standard specifies how transactions and

other events are to be recognized, measured, presented, and disclosed in financial statements to the

rest of the market participants. Interestingly, the asymmetric treatment of the optimal policy be-

tween bad and good news is broadly consistent with the conservatism principle usually recommended

by accounting standard-setters. The Financial Accounting Standards Board describes conservatism

as “a prudent reaction to uncertainty to try to ensure that uncertainties and risks inherent in busi-

ness situations are adequately considered. Thus, if two estimates of amounts to be received or paid

in the future are about equally likely, conservatism dictates using the less optimistic estimate.” The

adversarial approach followed in the paper is consistent with this definition in that the value of

the financial institutions’ securities accounts for an adversarial (but rational) market reaction and

assumes that if multiple equilibria are consistent with equilibrium play, the most adversarial one is

used to price the security.

The accounting literature has identified two broad forms of conservatism: conditional and un-

conditional conservatism. Roughly, under conditional conservatism, financial institutions are rec-
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ommended to record losses as soon as they learn about them, whereas potential gains are to be

recognized only after they have materialized. In turn, unconditional conservatism occurs through

the consistent under-recognition of accounting net assets. The theory in the paper provides a bridge

between the two concepts. Indeed, the adversarial approach assumed to price the institution’s risky

asset (unconditional conservatism) endogenously leads to an optimal disclosure policy that features

asymmetric treatment between bad and good news (conditional conservatism).

5 Enrichments

5.1 Private Information

A typical argument against increasing the transparency of financial markets is the idea that it may

exacerbate agency conflicts. The argument posits that firms facing intensive disclosure requirements

might strategically act in their own self-interest (Landier and Thesmar (2011), Leitner and Williams

(2023)). I show that the optimal disclosure policy is generally robust to the firm’s superior private

information. In the current model, an informed bank may attempt to signal its private information

by strategically choosing the security offered to AM investors. In many applications of interest, the

firm’s private information may be an important concern when designing regulatory disclosures. In

the case of banking, the regulator and market participants alike pay close attention to the bank’s

superior information with respect to its opaque balance sheets (e.g., the volume of nonperforming

loans). The bank’s actions are then usually scrutinized and used as signals of the bank’s residual

private information.

There is a vast theoretical literature showing that the securities sold by the issuer may signal

her private information. I extend Nachman and Noe (1994)’s security design problem to the current

environment with an endogenous probability of default and show that, under the optimal policy,

the equilibrium outcome during the fund-raising stage features pooling among all bank types. That

is, the optimal policy is robust to signaling incentives. This result is consistent with the findings

of Quigley and Walter (2023) who show that when regulators account for financial institutions’

voluntary disclosures, they optimally design policies that foster “private silence.” In the current

environment, banks’ cannot make announcements to the market but still can provide useful infor-

mation with their security choice. The result below shows that, under the optimal policy, banks do
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not signal their residual private information.

I assume that, at the beginning of period 0, before the regulator discloses information about

the risky asset, the bank learns a private signal about θr, ξ ∈ Ξ ≡ {ξL, ξH}, with ξL < ξH , and

updates beliefs about θr according to the conditional cdf Fr (θr|ξ) (resp., pdf f ξr (θr|ξ)), ξ ∈ Ξ. I

refer to ξ as the bank’s type. Neither the investors nor the regulator observes the bank’s signal. I

assume that the conditional pdf f ξr (θr|ξ) satisfies log-supermodularity in (θr, ξ) (or, equivalently,

that cashflows are ordered according to MLRP).

After observing its private signal, the bank sells a security s to AM investors, which corresponds

to a claim on the risky asset’s future cashflow. Formally, any security s belongs to S ≡ {s :

Xr → R+ s.t: (LL),(M),(MR)} where (LL) 0 ≤ s(θr) ≤ θr, ∀θr ∈ Xr; (M) s is nondecreasing and

(MR) θr − s (θr) is nondecreasing. The security s is arbitrary and can represent, e.g., an equity

stake, a debt contract, a convertible security, etc.

The bank can signal its private information through its security choice. The signaling incentives,

in turn, may compromise the regulator’s desired outcome. Indeed, for any possible disclosure mr,

the fact that type ξH has a better risky asset than type ξL (a consequence of MLRP), implies that the

former is relatively more willing to risk defaulting to signal its quality. The next proposition shows

that when default risk is substantial, then despite the bank’s private information, the regulator can

implement the same outcome as in the absence of private information.

Proposition 3. Suppose that

lim
p↑K

EξH
[
θr|θr ≥ θ̂r

]
φ (p) < KR, (9)

then, the regulator’s optimal policy coincides with Γ⋆. Furthermore, for each possible realization of

mr, the bank’s optimal strategy coincides with x⋆ (·).

To understand inequality (9), first note that by definition, E
[
θr|θr ≥ θ̂r

]
= KR. The fact

that ξH is good news (Milgrom (1981)) then means that EξH
[
θr|θr ≥ θ̂r

]
> KR. The assumption

that inequality (9) holds, implies that the probability of default is substantial even when the bank

has optimistic residual private information. The assumption captures the idea that, despite the

bank’s private information, the financial constraints are severe and all bank types are vulnerable

to the interaction of the two audiences. When (9) holds, any bank type which raises less than K
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– the amount needed to persuade ST creditors to keep pledging – experiences a discrete penalty

(a haircut) when selling its asset to AM investors. Thus, even if the bank type was commonly

known to be ξH , it would still have an incentive to raise enough funds to dissuade ST creditors from

running.27

Proposition 3 establishes that, when default risk is substantial, the bank refrains from signaling

its private information. Consequently, the regulator can implement her optimal policy despite the

underlying information frictions. The economic mechanism driving the result is reminiscent of the

famous result in Nachman and Noe (1994), extended to the current environment with an endogenous

probability of default. The fact that bank suffers a discrete penalty when not raising enough funds to

dissuade ST creditors from running, serves as discipline device and leads all bank types to pool under

the same security, thereby curbing their signaling incentives and implementing the regulator’s most

preferred outcome. The fact that adding residual private information information on the bank’s

end induces more constraints for the regulator, then implies that if the optimal solution in the less

constrained environment (i.e., without the bank’s private information), remains feasible under the

new environment, then it must also be optimal under the additional constraints.

5.2 Disclosures about banks’ Liquidity

Thus far, we have restricted attention to the case where the only tools at the regulator’s disposal

are her ability to design regulatory disclosures with respect to the financial institution’s assets. In

practice, policy makers typically react when liquidity squeezes trigger financial distress at solvent

but potentially illiquid large financial institutions. Below, I explore the case in which the regulator

can react to the liquidity shock by disclosing information about ω before ST creditors make their

rollover decision. This emergency response is inspired by the stress tests conducted both in the

US (SCAP) and in Europe in the middle of the global financial crisis and more recently during the

Covid crisis.

I assume that, in period 1, the regulator has the technology to conduct a liquidity disclosure

Γω [P ] = {Mω, πω [P ]}, which discloses information about the bank’s liquidity according to the rule

πω [P ] : Ω → ∆Mω. The disclosure accounts for the amount of funds raised during the fund-raising
27The assumption guarantees that even if the investors learned ξ = ξH , their incentives to pledge funds still comove

with the rest of the investors’ behavior, and therefore strategic complementarities manifest.
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stage, P . Importantly, the liquidity disclosure is sequentially rational and maximizes the regulator’s

period 2 payoff. This assumption captures the idea that the bank is too big or too interconnected

to fail, and as a result, if the liquidity shock occurs, the regulator maximizes the probability that

the bank survives, regardless of any promises made at t = 0. Alternatively, the regulator designing

Γω is different from the one designing Γ.

I modify the period 1 sequence of events as follows: (a) the regulator observes P , designs Γω and

publicly announces it; (b) ω is drawn from Fω; (c) the regulator discloses information mω according

to Γω; (d) ST creditors observe P and mω and decide whether to run; and (e) the bank liquidates

a fraction of its safe asset, and its fate is determined according to whether ω + P ≥ d1 (1−A).

The optimal liquidity disclosure can be interpreted as a pass-fail test, where given the level of

funds raised P , the regulator assigns a passing grade when the bank’s liquidity is above the cutoff

ω̄ST(P ). Proposition 4 summarizes these findings.

Proposition 4. Fix P ≥ 0. Then, the liquidity disclosure, Γ⋆
ω [P ], consists of a monotone pass-fail

test with cutoff ω̄ST (P ), such that Γ⋆
ω(P ) = ({G,B}, π⋆ω [P ]), with π⋆ω {G|ω;P} = 1

{
ω ≥ ω̄ST(P )

}
.

The cutoff ω̄ST (·) is nonincreasing in P .

The proof is in the Online Appendix. When the regulator announces that the bank’s liquid funds

exceed ω̄ST(P ), all ST creditors rollover and survival occurs with certainty. By contrast, when the

bank fails, all ST creditors withdraw early and the bank defaults. Indeed, ω̄ST (P ) < d1 (1−A0)−P ;

therefore, announcing that ω < ω̄ST (P ) induces bank failure with certainty.

In contrast to our previous findings, the optimal liquidity disclosure is coarse and minimizes the

information passed on to the market. The result is consistent with the economic intuition described

in the introduction. When the regulator announces information about ω, she speaks to a single

audience. The optimal policy is thus a recommendation to the ST creditors whether or not to pledge

funds.

5.2.1 Policy Traps

A key feature of liquidity shocks is that, by definition, they are unexpected. The promise of

disclosing information about the bank’s liquidity can be self-defeating and backfire. Indeed, if AM

investors expect that the regulator will provide information about the bank’s liquidity when a shock
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materializes, their assessment about ST creditors’ response becomes more optimistic. This, in turn,

exacerbates the bank’s incentive to signal its private information during the fund-raising stage and

to raise less funds than socially optimal. Without the regulator’s disclosure, in turn, the threat of

a run of ST creditors imposes discipline on the bank because it compels it to raise precautionary

funds to prevent default, thereby dissipating the signaling incentive. The anticipation of future

disclosure makes it easier for type ξH to separate from type ξL since default risk decreases. Signaling,

however, increases the probability of default and destroys the benefits of disclosing information. The

next proposition shows that, perhaps surprisingly, under some conditions, the regulator with the

technology to conduct a liquidity disclosure may fare worse than a regulator who does not intervene

at all.

Condition 1. The distribution of liquidity shocks Fω and ST creditors’ payoff functions g and b

satisfy

(A) (∃ε > 0), Λ (P ) ≡ KP [ω ≥ ω̄ (P )]− P > 0 for all P ∈ [K − ε,K).28

(B) lim
P→K−

1 − Fω (d1 (1−A0)− P ) < ϕ̄ ≡ EH [θr−sD]−EL[θr−sD]
EHθr−EL[θr]

, where sD ≡ min {y,D} with

E [sD] = KR.

Proposition 5. Assume that condition 1 holds; then, under the optimal liquidity disclosure Γ⋆
ω,

default occurs with positive probability across all equilibria. In contrast, under the laissez-faire

policy, the probability of default reduces to 0.

As proved in Proposition 7 in the Appendix, at any equilibrium of the fund-raising stage, banks

raise at most K when pooling. Furthermore, both bank types raise strictly less than K at any

separating equilibrium. Assumption (A) in condition 1 implies that, under the optimal liquidity

disclosure, Γ⋆
ω, both bank types find it optimal to deviate from the pooling outcome where both raise

K. Intuitively, under this assumption, a bank that raises slightly less than K faces a probability

of default barely above 0. Such a deviation from the pooling equilibrium is always interpreted

as coming from type ξH who has a better asset and therefore is relatively more willing to risk

defaulting to signal its quality. Thus, small deviations are interpreted as coming from type ξH and
28This property is equivalent to requiring that

lim
ω→d1(1−A0)−K

(b (ω,K,A0)− g (ω,K,A0)) fω (ω,K,A0)K < b (0,K,A0) .
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priced accordingly. Both types then have the incentive to deviate from the situation where both

raise K and raise strictly less funds, thus inducing ST creditors to run.

Assumption (B), on the other hand, implies that in the absence of liquidity disclosure, the

probability of default is sufficiently large if the bank does not raise K. This effect imposes disci-

pline compels both types to raise sufficient funds to dissuade ST creditors from running. Under

assumption (B), both bank types thus pool over the same debt contract sD = min {y,D}, with

E [sD] = KR; as a result, they avoid default with certainty.

Surprisingly, under modest assumptions, the market may fare worse when the regulator who

tries to maximize the probability of the bank’s survival is equipped with a better technology.

6 General Model

We now generalize the results in the baseline model to a fairly large class of economies. Consider

an economy composed of N ≥ 2 audiences. These audiences may represent investors in different

interconnected financial institutions. For example, these can be creditors of different banks with

systemic risk exposures (Huang (2020); Dai et al. (2022)) or connected through the liquidity of the

secondary market and the potential fire sales (Goldstein et al. (2023)). The audiences can also

capture a group of financial institutions (e.g., private investment funds, mutual funds) financing

one or multiple private companies whose success depends upon the diffusion of a new technology

(e.g., new payment technology) with positive adoption externalities (Alvarez et al. (2023); Crouzet

et al. (2023)). Finally, as in the baseline model, these audiences may capture a financial institution’s

different types of investors.

Each audience consists of a mass 1 of atomistic investors. The fundamentals of the economy are

captured by the random vector
−→
ϑ = (θ1, ...,θN ,ω) ∈ ΠN

i=1Xi × Ω, where Xi ≡ [xi, x̄i] ,Ω ⊆ R+.

Each θi ∈ Xi captures a dimension of the economy’s fundamentals of direct interest to audience i.

For example, the audiences can represent investors interested in funding different (interconnected)

companies whose fundamentals are parameterized by θi. Alternatively, the audiences may represent

investors interested in purchasing different assets, with returns θi, from a single company. I refer

to θi as the fundamentals’ dimension i. Variable ω, in turn, captures the level of fragility of the

economy under consideration and parameterizes the linkages between the audiences.
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Information. Assume that all investors share the same prior beliefs about the economy’s

fundamentals, F ∈ ∆
(
ΠN

i=1Xi

)
. For simplicity, I assume that, for any i ̸= j ∈ {1, ..., N}, θi⊥θj

and θi⊥ω. I refer to the marginal distribution of dimension i as Fi ∈ ∆Θi and use Fω ∈ ∆Ω to

denote the marginal distribution of ω.

Actions. Each investor l ∈ [0, 1] in each audience i must choose an action ali ∈ Xi ≡ [xi, x̄i]. For

each i ∈ {1, ..., N}, we let Ai ≡
∫ 1
0 a

l
idl denote the aggregate support from audience i ∈ {1, ..., N}.

We also let A−i ≡
∑

j ̸=iAj denote the aggregate support from the rest of audiences j ̸= i.

6.1 Strategic Complementarities

Preferences. The regulator is interested in maximizing the aggregate support of all the audiences.

Her payoff is determined by a weighted average of the audiences’ support. That is, she maximizes

UR(A⃗) ≡
∑N

i=1 γiAi, with γi ≥ 0 for all i. The underlying assumption is that the projects or assets

that the audiences invest in are welfare-improving and it is efficient to maximize their support.

I assume that each investor l in audience i cares about: (a) the fundamentals’ i-th dimension,

θi, (b) the aggregate support of all the audiences, (Ai, A−i), and (c) the fragility of the economy,

ω. Specifically, I assume that the preferences of audience i investors are captured by29

ui

(
ali, θi, ω,Ai, A−i

)
≡ −1

2

(
ali − θi · 1 {ω +Ai +A−i ≥ d}

)2
.

Define Ui (ai, Ai, A−i) ≡ E [ui (ai,θi,ω, Ai, A−i)] . The current specification implies that investors’

marginal incentives to increase their action are captured by

∂

∂ai
Ui (ai, Ai, A−i) = E [θi] · P [ω +Ai +A−i ≥ d]− ai. (10)

That is, taking the behavior of all the audiences (Ai, A−i) as given, each investor in audience i

would like to match

E [θi] · P [ω +Ai +A−i ≥ d]︸ ︷︷ ︸
≡φ(Ai,A−i)

,

29Because of the homogeneity in beliefs, the specification is equivalent to the one where investors maximize ui =

−
(
1−ρ
2

) (
al
i − θi · 1 {ω +Ai +A−i ≥ d}

)2 − ρ
2

(
al
i −Ai

)2
, for any ρ ∈ [0, 1]. The results below extend more generally

to preferences of the form ui = − 1
2

(
al
i − ηi (Ai, A−i) 1 {ω +Ai +A−i ≥ di} − κi

)2
, for which the best responses take

the form E [θi] ηi (Ai, A−i) (1− Fω (di −Ai −A−i)) − κi, as long as the functions ηi (Ai, A−i) are weakly positive,
nondecreasing and weakly convex.
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i.e., the expected value of the fundamentals’ dimension in which they are interested, E [θi], scaled

by the factor φi (Ai, A−i). This specification captures the idea that investors in audience i enjoy

the fundamentals’ dimension i, θi, as long as the level of support of all audiences is large enough

as a function of fragility parameter ω. The random variable ω thus captures the minimal amount

of support from the audiences required to enjoy the future returns of the projects or assets. In the

case where the audiences are investors from the same financial institution, ω may represent the

financial institution’s liquidity (as in the baseline model). In turn, when the audiences are investors

from different, interconnected firms, ω may represent the liquidity of the most vulnerable firm in

the network, or the critical mass of investment required for the industry to take off.

Note that φ (Ai, A−i) directly depends on the behavior of all the audiences and the distribution

of ω. The probability φ (Ai, A−i) increases with the mass of investors in all audiences pledging

support. This means that the audiences are exposed to the strategic behavior of the investors

within and across audiences through the fragility of the economy (e.g., liquidity constraints). Indeed,

each investor’s marginal incentive to increase their action, as captured by equation 10, increases

with E [θi], Ai, and A−i. In other words, investors’ payoffs are supermodular with respect to (a)

(ai,E [θi]) and (b) (ai, Ai), and (c) (ai, A−i). These properties are standard assumptions in games

with strategic complementarities.30 Property (a) implies that improving the perception of E [θi]

increases the support from investors in audience i. Properties (b) and (c), on the other hand,

capture the idea that the investors’ preferences display strategic complementarities among investors

within and across audiences.

Intuitively, θi parameterizes the maximal profitability that the fundamentals’ dimension i can

potentially reach. Under the interpretation that each audience’s support represents the amount of

funds invested in assets with return θi, the specification captures the idea that the returns of asset

i increase when audience i pledges more funds, but also increases when the other audiences pledge

more funds to their respective projects.

When assumption (2) holds, implying a large degree of fragility, the marginal incentive to increase

the level of support ai, increases more when the audiences are providing a larger level of support,

(Ai, A−i). To see this, note that the degree of strategic complementarities for investors in audience

i, captured by ∂2Ui(ai,Ai,A−i)
∂A−i∂ai

= E [θi]
∂φ

∂A−i
(Ai, A−i) , is larger for larger values of (Ai, A−i).

30They correspond, e.g., to assumptions A1 and A2 in Morris and Shin (2006), the canonical model of global games.
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6.2 Financial Constraints and Strategic Complementarities

I formalize the idea that financial constraints exacerbate strategic complementarities. To see this,

consider two (marginal) distributions F 1
ω , F

2
ω ∈ ∆Ω satisfying

f1ω (x)

1− F 1
ω (x)

≥ f2ω (x)

1− F 2
ω (x)

, ∀x ∈ Ω.

That is, F 2
ω dominates F 1

ω in the hazard rate (HR) order, which we write as F 2
ω ⪰HR F 1

ω . Intuitively,

under F 1
ω liquidity constraints are more stringent than under F 2

ω . Indeed, it is well-known that the

HR order implies first order stochastic dominance (FOSD), which means that under F 1
ω the level of

liquidity is stochastically worse than under F 2
ω .31 For example, it is easy to see that any distribution

F̃ω ∈ ∆Ω satisfying assumption 2 is dominated by the uniform distribution FUniform
ω ∈ ∆Ω. Indeed,

1− F̃ω (x)

f̃ω (x)
=

∫ supΩ

x

f̃ω (z)

f̃ω (x)
dz ≤

∫ supΩ

x
dz =

1− FUniform
ω (x)

fUniform
ω (x)

.

Our next result shows that, when liquidity constraints are more stringent, each investor’s

marginal incentive to increase their own support increases proportionally more, and hence it is

amplified, when other audiences increase their support.

Lemma 2. [Financial Constraints and Complementarities] Consider F 1
ω , F

2
ω ∈ ∆Ω with

F 2
ω ⪰HR F 1

ω; then, fixing (Ai, A−i), the marginal incentives to increase the level of support increases

proportionally more under F 2
ω than under F 1

ω . Formally, for any (Ai, A−i), let âi (Ai, A−i;Fω) ≡

E [θi] · (1− Fω (di −Ai −A−i)) be the best response of audience i’s investor to (Ai, A−i). Then,

∂2Ui

(
âi, Ai, A−i;F

2
ω

)
∂A−i∂ai

/
âi
(
Ai, A−i;F

2
ω

)
≥
∂2Ui

(
âi, Ai, A−i;F

1
ω

)
∂A−i∂ai

/
âi
(
Ai, A−i;F

1
ω

)
.

6.3 Adversarial Equilibrium

Each investor conjectures that the aggregate support of the audiences is given by some profile

(Ai, A−i) and solves

max
ai∈Xi

E
[
−
(
ali − θi · 1 {ω +Ai +A−i ≥ d}

)2]
.

31Further, the MLRP order implies the HR order. The MLRP order was used to perform comparative statics in
Section 4 (see lemma 1).
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The fact that all investors share the same prior beliefs about the fundamentals
−→
ϑ , implies that the

equilibrium aggregate support (Ai, A−i) is measurable with respect to the prior F (and not with

respect to the realization
−→
ϑ ). The fact that each investor is atomistic, then means that all investors

in audience i choose the same action a∗i (F ) given by

a∗i (F ) = E
[
θi · 1

{
ω +A∗

i (F ) +A∗
−i (F ) ≥ d

}]
= E [θi] · φ

(
A∗

i (F ) , A
∗
−i (F )

)
,

where, for any i ∈ {1, ..., N} , A∗
i (F ) ≡

∫ 1
0 a

∗
i (F ) dl = a∗i (F ). This further means that, in equilib-

rium, investors’ actions depend on the prior F only through the vector of prior expectations E
[
θ⃗
]

and are given by

a∗i

(
E
[
θ⃗
])

= E [θi] · φ
(
a∗i

(
E
[
θ⃗
])
, a∗−i

(
E
[
θ⃗
]))

, ∀i ∈ {1, ..., N} (11)

where a∗−i

(
E
[
θ⃗
])

≡
∑

j ̸=i a
∗
j

(
E
[
θ⃗
])

.

The system in (11) may admit multiple solutions. Consistent with the idea of conservative

regulatory disclosures, whenever there is multiplicity of equilibria, we focus on the most adversarial

equilibrium, i.e., the smallest action profile
(
a∗i , a

∗
−i

)
satisfying 11. Intuitively, this solution concept

captures the idea that the regulator does not trust her ability to coordinate the market on her most

preferred outcome when multiple action profiles are consistent with equilibrium play. The regulator

is thus conservative and assumes that the audiences will coordinate on the worst equilibrium profile.

6.4 Convexity

I show next that, under adverse market conditions as captured by assumption (2), the strategic

complementarities between the audiences lead to optimal actions that are first convex in the expected

fundamentals of the economy and then comove in a linear manner with the fundamentals. To

facilitate the exposition, I focus below on the case where N = 2. I extend the results to the case

with arbitrary number of audiences in the Online Appendix.

Assumption 4. Suppose that, for all i, x̄i > max {d, 1/fω (0)} and that x̄i (1− Fω (di −A))−A > 0

for all A ≤ x̄i.
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Our next result shows that, in equilibrium, investors’ best responses are convex-then-linear in

the fundamentals dimension of their interest.

Proposition 6. [Convex-then-Linear]Suppose assumptions 2 and 4 hold. Then, for any θ̄j,

there exists θ̄##
i

(
θ̄j
)
≤ x̄i, such that (a) for any θ̄i ≤ θ̄##

i

(
θ̄j
)
, a∗i

(
·, θ̄j

)
and a∗j

(
·, θ̄j

)
are both

strictly increasing and strictly convex in θ̄i, whereas (b) for any θ̄i > θ̄##
i

(
θ̄j
)
, a∗i

(
θ̄i, θ̄j

)
= θ̄i and

a∗j
(
θ̄i, θ̄j

)
= θ̄j.

Proposition 6 shows that the main qualitative features of the baseline model wherein the firm’s

probability of survival is convex for lower fundamentals and then linear for good fundamentals are

a general insight that does not hinge on the specific institutional details assumed there. Roughly,

the assumption that the audiences are fragile and vulnerable to the behavior of the rest of the au-

diences for low fundamentals, and that such fragility evaporates when the underlying fundamentals

are strong implies that optimal market responses feature convexities for poor fundamentals that

eventually fade away. As in the baseline model, I show below that these properties translate in

optimal disclosures featuring transparency for weak fundamentals and opacity, otherwise.

6.5 Regulatory Disclosures

Assume that the regulator commits to a regulatory disclosure Γ = {π,M1, ...,MN}, which for each

realization of the fundamentals θ⃗, publicly discloses an announcement m⃗ = (m1, ...,mN ) ∈ ΠN
i=1Mi

with probability π
(
m⃗|θ⃗

)
. Each announcement mi represents information directly intended for

audience i. However, the public nature of the disclosure implies that all audiences perfectly observe

the whole vector m⃗.

I assume that, for each announcement m⃗ = (mi)
N
i=1 disclosed with positive probability, mi =

E [θi|m⃗] = E [θi|mi]. In other words, we identify each announcement with the posterior estimate

about the fundamentals’ i-th dimension after the information has been revealed to the market.

Importantly, we assume that disclosures are orthogonal among themselves, meaning that along

each dimension i, the information passed on to the investors, mi, reveals information exclusively

about θi, that is, E [θi|m⃗] = E [θi|mi].32

32Provided that the regulator’s disclosures are orthogonal, the assumption that mi = E {θi|mi} is without loss, as
implied by Strassen’s theorem.
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The fact that disclosures are public and that investors do not have private information implies

that, in equilibrium, strategies must be measurable with respect to the public announcement m⃗.

Thus, the equilibrium amount of support from audience i after announcement m⃗ is disclosed, is given

by A∗
i (m⃗). In equilibrium, each investor l in each audience i thus conjectures a market response(

A∗
i (m⃗) , A∗

−i (m⃗)
)

and solves

max
ali∈Xi

E
[
ui

(
ali,θi, A

∗
i (m⃗) , A∗

−i (m⃗)
)
|m⃗ = m⃗

]
.

The fact that

E
[
∂

∂ali
ui

(
ali,θi, A

∗
i (m⃗) , A∗

−i (m⃗)
)
|m⃗
]

= E
[
θiφi

(
A∗

i (m⃗) , A∗
−i (m⃗)

)
− ali|m⃗ = m⃗

]
.

= E [θi|m⃗]φi

(
A∗

i (m⃗) , A∗
−i (m⃗)

)
− ali

= miφi

(
A∗

i (m⃗) , A∗
−i (m⃗)

)
− ali,

then implies that, investors’ actions depend on the posterior beliefs distributions about θ⃗ only

through the public announcement m⃗. Thus, we must have

a∗i (m⃗) = mi · φi(a
∗
i (m⃗), a∗−i(m⃗)), ∀i ∈ {1, ..., N} . (12)

Next, we note that any regulatory disclosure Γ induces a distribution of posterior estimates

{E [θi|mi]}Ni=1. Let Gi represent the cdf of posterior estimates of dimension i induced by regulatory

disclosure Γ (i.e., GΓ
i is the cdf of the random variable E [θi|mi]). There exists a one-to-one mapping

between (orthogonal) regulatory disclosures and distributions of posterior estimates (G1, ..., GN )

satisfying, for each dimension i, Fi ⪰MPS Gi. Henceforth, we identify each regulatory disclosure

with the distribution of posterior estimates that it generates and denote it by Γ = {Gi, Gj}.

The regulator’s problem then reduces to

max
{Gi}Ni=1

N∑
i=1

γi

∫ ∞

0
a∗i (mi) dGi (mi)

s.t: Fi ⪰MPS Gi, ∀i.

Our next result characterizes the optimal regulatory disclosure.
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Theorem 2. The optimal regulatory disclosure Γ∗ =
{
G∗

i , G
∗
j

}
is characterized as follows. Fix an

announcement on the j-th dimension, mj = mj; then, there exists m̂i (mj) so that

G∗
i

(
θ̄i
)
=


Fi

(
θ̄i
)

if θ̄i ≤ m̂i (mj)

Fi (m̂i (mj)) if m̂i (mj) < θ̄i < θ̄##
i (mj)

1 if θ̄i ≥ θ̄##
i (mj) ,

where m̂i (mj) is implicitly defined by E
[
θ̄i|θ̄i ≥ m̂i (mj)

]
= θ̄##

i (mj).

Theorem 2 shows that the main qualitative insight deduced in the Baseline Model extends more

broadly to a rich class of economies where strategic complementarities manifest. In this Section, I

have abstracted from many institutional details assumed in the Baseline Model to broaden the scope

of the applications the model can be used for. Similar to the findings in Theorem 1, the optimal

disclosure Γ∗ imposes, along each dimension i, complete transparency for weak fundamentals, θ̄i ≤

m̂i (mj), followed by complete opacity for strong fundamentals, θ̄i > m̂i (mj). I prove in the Online

Appendix that the features of the optimal disclosures discussed in this Section further generalize

for the case with N > 2 audiences and to all stable equilibria (Dixit (1986)) of the game.

7 Conclusions

This paper studies the optimal design of regulatory disclosures. I consider a rich environment that

emphasizes the interaction among multiple audiences who care about different aspects of the firm’s

fundamentals. I show that the degree of transparency of the optimal policy is directly linked to the

extent of strategic complementarities between the market participants. Poor financial conditions

induce and amplify strategic complementarities among the firm’s investors generating a regulator’s

preference for granular disclosures. As the firm’s fundamentals improve, the strategic complemen-

tarities vanish, thereby dissipating the preference for transparency.

The optimal regulatory disclosure is robust to several practical concerns. Optimal disclosures

are robust to (i) the adversarial coordination of the firm’s investors, (ii) the firm’s agency, and (iii)

the introduction of asymmetric information. Interestingly, the main predictions of the model are

consistent with recent empirical findings documenting the relationship between the informativeness
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of regulatory disclosures and the firms’ financial conditions.

The above results are worth extending in several directions. The analysis assumes the regulator

knows the distribution of the fundamentals in the economy when she designs the optimal her policy.

Such knowledge may come from previous experience with similar firms. While this is a natural

starting point, there are many environments in which it is more appropriate to assume that the

regulator lacks information about the joint distribution of the underlying fundamentals. In future

work, it would be interesting to investigate the optimal disclosure policy in such situations. One

idea is to apply a robust approach to the regulator’s problem, whereby the regulator expects nature

to select the information structure that minimizes her payoff. The characterization of the optimal

policy in this environment is highly relevant both from a theoretical standpoint and for the associated

policy implications.

The analysis assumes that the only tool at the regulator’s disposal is her ability to design

regulatory disclosures. In many applications of interest, the regulator can complement disclosures

with additional measures. For instance, she may impose further capital or liquidity restrictions, or

react to liquidity squeezes by acting as a lender of last resort. In future work, it would be interesting

to study the interplay between disclosures and other policy tools.

The model further assumes a one-shot interaction between the firm and its investors. However,

firms’ financial decisions are intrinsically dynamic phenomena. If the fundamentals are persistent

over time, the optimal policy must also specify the timing of disclosures. In future work, it would

also be interesting to extend the analysis in this direction.

Appendix A: Laissez Faire

Proof of Proposition 1.

We start with claim (a). For any P, z ∈ R+, define the function ζ (P ; z) ≡ P−
(
z
R

)
(1− Fω (ω̄ (P ))) .

Consider any z ∈ [0, PR/λ). Suppose first that d1 (1−A0) > 1 and hence that P > 0. This implies

that ζ (0; z) = 0 and that, for any 0 < P ≤ P , ζ (P ; z) = P −
(
z
R

)
P [ω ≥ ω̄ (P )] > 0. Next, suppose

by contradiction that there exists P̂ ∈ (P ,K) where the function ζ (·; z) crosses 0, from positive to

negative, that is, ζ
(
P̂ ; z

)
= 0 and ∂−ζ (P ; z)|P=P̂ = lim

h↓0

ζ(P̂ ;z)−ζ(P̂−h;z)
h < 0. Note that assumption
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2 implies that ζ (·; z) is concave and hence absolutely continuous. Thus,

ζ ′ (P ; z) = ζ
(
P̂ ; z

)
︸ ︷︷ ︸

=0

+

∫ P

P̂
ζ ′ (p; z)︸ ︷︷ ︸

<0

dp < 0, ∀P ∈
(
P̂ ,K

)
,

where the fact that ζ ′ (p; z) < 0 for all p ∈
(
P̂ ,K

)
follows from the concavity of ζ (·; z) and the

fact that ζ ′
(
P̂ ; z

)
= 0. The inequality above contradicts the fact that lim

p↑K
ζ (p; z) > 0, which in

turn follows from the fact that z < PR/λ ≤ θ# < KR. As a result, there is no positive price P

satisfying ζ (P ; z) = 0.

Assume now that d1 (1−A0) ≤ 1. Then, [0, PR/λ) = ∅ and hence the claim is vacuously true.

This proves claim (a). Claim (b) follows directly from the fact that A = (1−A0) 1 {P ≥ K}+ A0

and the observation that P̄ (z) = z
R for any z ≥ KR.

Next, to see claim (c), fix any z ∈ [PR/λ,KR). Assume that assumption 2 holds. We show

that ϕ′′ (z) > 0 for any z ∈ [PR/λ,KR). Indeed, by differentiating (7) with respect to z, we obtain

ϕ′ (z) = fω
(
ω̄
(
P̄ (z)

))
P̄ ′ (z) = fω

(
ω̄
(
P̄ (z)

))(ϕ (z) + zϕ′ (z)

R

)
, (13)

where the last equation follows from differentiating P̄ (z) (recall the definition in 4). Differentiating

(13) with respect to z, we get that

Rϕ′′ (z) = −f ′ω
(
ω̄
(
P̄ (z)

))
P̄ ′ (z)2 /R+ fω

(
ω̄
(
P̄ (z)

)) (
2ϕ′ (z) + zϕ′′ (z)

)
,

and therefore we conclude that

ϕ′′ (z) =
−f ′ω

(
ω̄
(
P̄ (z)

))
P̄ ′ (z)2 /R+ 2fω

(
ω̄
(
P̄ (z)

))
ϕ′ (z)

R− zfω
(
ω̄
(
P̄ (z)

)) . (14)

Claim c. 1. R− zfω
(
ω̄
(
P̄ (z)

))
> 0 for all z ∈ [PR/λ,KR) .

Proof of claim c .1. We prove that the function ζ (·; z) crosses 0 exactly once from below over

P ∈ [P ,K]. Indeed,

ζ (P ; z) = P −
( z
R

)
P [ω ≥ min {1, d1 (1−A0)}] ≤ P −

( z
R

)
λ ≤ 0,
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where the last inequality follows from the assumption that z ∈ [PR/λ,KR). Next, note that

lim
p↑K

ζ (p; z) > 0. The intermediate value theorem then implies that there exists P̃ ∈ (P ,K), with

ζ
(
P̃ ; z

)
= 0.

We finally prove uniqueness. Note that the assumption that Fω admits a continuously density

over [0, 1) implies that ζ (·; z) is concave and continuously differentiable. Suppose that the equation

ζ (P ; z) = 0 admits multiple solutions over [P ,K]. Then, let P̃1 and P̃2 be two such solutions and

assume that P̃1 < P̃2 and that ζ (·; z) crosses 0 from below at P̃1 and from above at P̃2. Then, it

must be the case that ζ’
(
P̃2; z

)
< 0. The concavity of ζ (·; z) then implies that ζ ′ (P ; z) < 0 for

almost all P ∈
[
P̃2,K

]
. This means that

ζ ′ (P ; z) = ζ
(
P̃2; z

)
︸ ︷︷ ︸

=0

+

∫ P

P̃2

ζ ′ (p; z)︸ ︷︷ ︸
<0

dp < 0, ∀P ∈
[
P̃2,K

]
.

This contradicts that ζ (K−; z) > 0. Thus, there exists a unique P̃ ∈ (P ,K), with ζ
(
P̃ ; z

)
=

0. Moreover, ζ (·; z) turns from negative to positive at this point. The definition of P̄ (z) then

implies that P̃ = P̄ (z). We must then have that Rζ’(P ; z) = R − zfω (ω̄ (P )) > 0 for all P ∈(
P̄ (z)− ϵ, P̄ (z) + ϵ

)
, some ϵ > 0.■

Claim c. 2. ϕ′ (z) , P̄ ′ (z) > 0 for almost all z ∈ (PR/λ,KR) .

Proof of Claim c.2. From equation (13), we know that, for all z ∈ (PR/λ,KR) ,

ϕ′ (z) =
fω
(
ω̄
(
P̄ (z)

))
ϕ (z)

R− zfω
(
ω̄
(
P̄ (z)

)) .
Claim (c.1) then implies that ϕ′ (z) > 0 for almost all z ∈ (PR/λ,KR) . The fact that P̄ (z) =

z
Rϕ (z), together with the last result, then jointly imply that P̄ ′ (z) > 0 for almost all z ∈

(PR/λ,KR) .■

The proof of claim (c) then follows from combining the results in claims (c. 1) and (c. 2), and

equation (14).□

Proof of Proposition 2. We first observe that P̄ is nontrivial only for assets with expected

cashflows θ̄r ≥ PR/λ. Indeed, as proved in Claim (a) of Proposition 1, for any x ≤ θ̄r < P̄R/λ,

P̄ (x) = 0 = φ
(
P̄ (x)

)
, and therefore the firm optimally chooses x⋆ = 0.
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Next, assume that θ̄r ∈ [PR/λ,KR). We show that V
(
x; θ̄r

)
is U-shaped (and hence quasi-

convex) over x ∈
[
PR/λ, θ̄r

]
and always attains its global maximum at one of the corners x ∈{

0, θ̄r
}
. Indeed, note first that

∂

∂x
V
(
x; θ̄r

)
=

d
dx
{(
P̄ (x)R−R (d1 − 1) + θ̄r − x

)
φ
(
P̄ (x)

)}
=

{
Rφ

(
P̄
)
+
(
P̄R−R (d1 − 1) + θ̄r − x

)
φ′ (P̄ )} P̄ ′ (x)− φ

(
P̄
)

=
{
Rφ

(
P̄
)
+
(
P̄R−R (d1 − 1) + θ̄r − x

)
φ′ (P̄ )}( φ

(
P̄
)

R− xφ′
(
P̄
))− φ

(
P̄
)

= RP̄ ′ (x) ·
{
φ
(
P̄
)
+
(
P̄ − (d1 − 1) + θ̄r/R

)
φ′ (P̄ )− 1

}
,

where the third and fourth equalities obtain from noting that implicit differentiation of the P̄

function yields P̄ ′ (x) = φ
(
P̄
)
/
(
R− xφ′ (P̄ )) . We note next that V

(
x; θ̄r

)
is supermodular in(

x, θ̄r
)
. Define

χ
(
x; θ̄r

)
≡ φ

(
P̄ (x)

)
+
(
P̄ (x)− (d1 − 1) + θ̄r/R

)
φ′ (P̄ (x)

)
− 1.

The monotonicity of φ and P̄ and the convexity of φ (implied by assumption 2) means that χ
(
·; θ̄r

)
is monotone. Let x0

(
θ̄r
)

be implicitly defined as the solution to χ
(
x0; θ̄r

)
= 0 if such a solution

exists for some x ∈
[
PR/λ, θ̄r

]
. Otherwise, let x0

(
θ̄r
)
= θ̄r if χ

(
x; θ̄r

)
< 0 for all x ∈

[
PR/λ, θ̄r

]
,

and x0
(
θ̄r
)
= PR/λ if χ

(
x; θ̄r

)
> 0 for all x ∈

[
PR/λ, θ̄r

]
.

Assume first that x0
(
θ̄r
)
∈
(
PR/λ, θ̄r

)
. The fact that χ

(
x; θ̄r

)
< 0 for all x < x0

(
θ̄r
)

and

χ
(
x; θ̄r

)
> 0 for all x > x0

(
θ̄r
)

implies that V
(
·; θ̄r

)
is decreasing over x ∈

[
PR/λ, x0

(
θ̄r
)]

and

increasing for any x > x0
(
θ̄r
)
. Thus, V

(
·; θ̄r

)
attains a (local) minimum at x = x0

(
θ̄r
)
, and a

(local) maximum at the corners x ∈
{
PR/λ, θ̄r

}
. The supermodularity of V

(
x; θ̄r

)
then means

that, if V
(
x = θ̄r; θ̄r

)
> V

(
x = PR/λ; θ̄r

)
for some θ̄r, then for any θ̄′r > θ̄r,

0 < V
(
x = θ̄r; θ̄r

)
− V

(
x = PR/λ; θ̄r

)
< V

(
x = θ̄r; θ̄

′
r

)
− V

(
x = PR/λ; θ̄′r

)
< V

(
x = θ̄′r; θ̄

′
r

)
− V

(
x = PR/λ; θ̄′r

)
,

where the second inequality obtains from the fact that V
(
·; θ̄r

)
is increasing for any x > x0

(
θ̄r
)

and the fact that θ̄′r > θ̄r > x0
(
θ̄r
)
. Thus, if for some θ̄r, the firm prefers to sell the whole asset
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x = θ̄r over selling the minimum amount leading to a nontrivial price, i.e., x = PR/λ, then, any

firm with an asset with θ̄′r > θ̄r prefers to sell the whole asset as well.

Suppose now that x0
(
θ̄r
)
= θ̄r. This means that V

(
·; θ̄r

)
is decreasing over

[
PR/λ, θ̄r

]
and

therefore attains a local maximum at x = PR/λ. Assume next, instead, that x0
(
θ̄r
)
= PR/λ. This

implies that V
(
·; θ̄r

)
is increasing over

[
PR/λ, θ̄r

]
and hence attains a local maximum at x = θ̄r.

Finally, we need to check whether, for any θ̄r ∈ [PR/λ,KR), the local maximum described above

is, in fact, a global maximum. As argued above, provided that the firm chooses to sell a fraction

x < PR/λ, it is optimal to not sell at all (i.e., x = 0), as any asset with expected cashflows below

PR/λ leads to a null price. We conclude that for any θ̄r ∈ [PR/λ,KR), x⋆
(
θ̄r
)
∈
{
0, PR/λ, θ̄r

}
.

When P = 0, the bank chooses x⋆
(
θ̄r
)
∈
{
0, θ̄r

}
. That V

(
θ̄r, θ̄r

)
=
(
P̄
(
θ̄r
)
R−R (d1 − 1)

)
φ
(
P̄
(
θ̄r
))
>

0 only if θ̄r > θ# implies that x⋆
(
θ̄r
)
= 1

{
θ̄r ≥ θ#

}
, leading to the desired conclusion for the case

P = 0.

Assume then that P > 0 and h
(
θ#
)
< h (PR/λ). For any θ̄r ∈

[
PR/λ, θ#

)
,

V
(
PR/λ, θ̄r

)
=

(
P̄ (PR/λ)R−R (d1 − 1) + θ̄r − PR/λ

)
φ
(
P̄ (PR/λ)

)
=

(
PR−R (d1 − 1) + θ̄r − PR/λ

)
λ.

We show that V
(
PR/λ, θ̄r

)
< 0 for all θ̄r ∈

[
PR/λ, θ#

)
. Indeed,

V
(
PR/λ, θ#

)
=
(
PR−R (d1 − 1) + θ# − PR/λ

)
λ = R

(
h
(
θ#
)
− h (PR/λ)

)
λ < 0,

where the inequality directly follows from inequality (8). The monotonicity of V (PR/λ, ·) then

implies that V
(
PR/λ, θ̄r

)
< 0 for all θ̄r ∈

[
PR/λ, θ#

)
. Note next that for any θ̄r ∈

[
PR/λ, θ#

)
,

V
(
θ̄r, θ̄r

)
=
(
P̄
(
θ̄r
)
R−R (d1 − 1)

)
φ
(
P̄
(
θ̄r
))

≤ 0, with equality if, and only if, θ̄r = θ#. This

means that, when θ̄r ∈
[
PR/λ, θ#

)
, both x = PR/λ and x = θ̄r are dominated by x = 0. In other

words, the bank does not sell any security to AM investors.

Because V
(
θ#, θ#

)
− V

(
PR/λ, θ#

)
> 0, the mean value theorem implies that, there is x̃ ∈(

PR/λ, θ#
)

such that ∂
∂xV

(
x̃; θ#

)
=

V (θ#,θ#)−V (PR/λ,θ#)
θ#−PR/λ

> 0. This further implies that χ
(
x̃; θ#

)
>

0. The monotonicity of χ
(
x; θ̄r

)
in
(
x, θ̄r

)
, together with the monotonicity of P̄ ′ (·) (recall that under
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assumption (2) P̄ is convex), then implies that

∂

∂x
V
(
x; θ̄r

)
≥ 0, for all x ≥ x̃, θ̄r ≥ θ#. (15)

In other words, x0
(
θ#
)
∈ [PR/λ, x̃). The supermodularity of V

(
x; θ̄r

)
then implies that for any

θ̄r > θ#,

0 < V
(
x = θ#; θ#

)
− V

(
x = PR/λ; θ#

)
< V

(
x = θ#; θ̄r

)
− V

(
x = PR/λ; θ̄r

)
< V

(
x = θ̄r; θ̄r

)
− V

(
x = PR/λ; θ̄r

)
.

We conclude that, for any θ̄r ∈
[
θ#,KR

)
, V

(
θ̄r; θ̄r

)
≥ max

{
V
(
0; θ̄r

)
, V
(
PR/λ; θ̄r

)}
, with strict

inequality for any θ̄r > θ#, and therefore, for any θ̄r ∈
(
θ#,KR

)
, x⋆

(
θ̄r
)
= θ̄r.

Finally, consider the case where θ̄r ≥ KR. Then, the firm can secure the maximal possible

payoff by issuing any security with expected value x = KR. Indeed, for any x ≥ KR, V
(
x; θ̄r

)
=

θ̄r −R (d1 − 1) . This completes the proof of Proposition (2).□

Appendix B: Optimal Information Disclosure

Proof of Theorem 1.

Let U (z) ≡ L0 (z) (1− ϕ (z)) +W0 (z)ϕ (z). Under the assumptions in the theorem, the function

U (·) is convex for any z < KR and hence differentiable almost everywhere. Using integration by

parts (Theorem VI.90 in Dellacherie and Meyer (1982)), we can rewrite the regulator’s problem as

min
G

∫ x̄

0
G (z) dU (z)−∆U (KR)∆G (KR)

s.t: Fr ⪰MPS G,

where ∆U (KR) ≡ U (KR+)− U (KR−) and ∆G (KR) ≡ G (KR+)−G (KR−).

Using the definition of L0 and W0, the objective then becomes

−τL
∫ θ#

0
G (z) dz +

∫ KR

θ#
(W0 (z)ϕ (z))

′G (z) dz + τW

∫ x̄

KR
G (z) dz −∆U (KR)∆G (KR) .
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Consider an arbitrary feasible distributionH satisfying Fr ⪰MPS H. Let µFr be the probability mea-

sure inducing Fr. Suppose that µFr {θr : H (θr) ̸= G⋆ (θr)} > 0. We show that such a distribution

is necessarily dominated.

Step 1. Assume that P
[
θr ≤ θ̂r : H (θr) < G⋆ (θr)

]
> 0. The definition of θ̂r implies that

P [θr < KR : H (θr) > G⋆ (θr)] > 0. To see the last observation, note that, if this is not the case,

then

∫ x̄

0
H (z) dz <

∫ KR

0
min

{
Fr (z) , Fr(θ̂r)

}
dz +

∫ x̄

KR
1dz

=

∫ θ̂r

0
Fr (z) dz + Fr(θ̂r)(KR− θ̂r) + (x̄−KR) .

= x̄− E0 (θr) =

∫ x̄

0
Fr (z) dz, (16)

where the inequality follows from the definition of G⋆, the first equality is self-evident, and the last

equality obtains from noting that, by definition of θ̂r,
∫ θ̂r
0 zFr (dz)+KR(1−Fr(θ̂r)) = E0 (θr) , and

therefore, using integration by parts,
∫ θ̂r
0 Fr (z) dz = θ̂rFr(θ̂r)+KR(1−Fr(θ̂r))−E0 (θr) . Inequality

(16), however, contradicts the assumption that Fr ⪰MPS H. We thus focus on policies H satisfying

P [θr < KR : H (θr) > G⋆ (θr)] > 0.

Next, pick two adjacent sets Θ− ⊆
[
0, θ̂r

]
, Θ+ ⊆ [0,KR), with supΘ− = inf Θ+, satisfying (a)

P [Θ−] ,P [Θ+] > 0, (b) H (θr) > G⋆ (θr) almost all θr ∈ Θ+ and H (θr) ≤ G⋆ (θr) for almost all

θr ∈ Θ− with P [θr ∈ Θ− : H (θr) < G⋆ (θr)] > 0, and (c)33

∫
Θ−

(Fr (z)−H (z)) dz =
∫
Θ+

(H (z)−G⋆ (z)) dz. (17)

Construct an alternative policy Ĥ defined as follows: Ĥ (θr) = H (θr) for all θr /∈ Θ− ∪ Θ+,

Ĥ (θr) = Fr (θr) for all θr ∈ Θ−, and Ĥ (θr) = G⋆ (θr) = min
{
Fr (θr) , Fr

(
θ̂r

)}
for all θr ∈ Θ+.

We note that the new policy is feasible as, by construction,
∫ θr
0 Ĥ (z) dz ≤

∫ θr
0 Fr (z) dz for all θr,

33Existence of Θ− and Θ+ is guaranteed from the assumption that P
[
θr ≤ θ̂r : H (θr) < G⋆ (θr) = Fr (θr)

]
> 0,

the observation above that µFr {θr < KR : H (θr) > G⋆ (θr)} > 0, and the fact that
∫ θr
0

H (z) dz ≤
∫ θr
0

Fr (z) dz for
all θr.
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and

∫ x̄

0
Ĥ (z) dz =

∫
Θ\(Θ−∪Θ+)

H (z) dz +
∫
Θ−

Fr (z) dz +
∫
Θ+

G⋆ (z) dz

=

∫ x̄

0
H (z) dz =

∫ x̄

0
Fr (z) dz,

where the second equality is a consequence of (17).

The new policy strictly improves upon H as U ′ (z) is nondecreasing over [0,KR), and Ĥ is

constructed from H by moving probability mass from high realizations of θr to low realizations.

Step 2. By virtue of Step 1, assume without loss that H (θr) = Fr (θ) for all θr ≤ θ̂r. For any

such a distribution H which also satisfies Fr ⪰MPS H, let

V [H] ≡
∫ x̄

θ̂r

U ′ (z)H (z) dz −∆H (KR)∆U (KR) .

Note that V [G⋆] = Fr

(
θ̂r

) ∫KR
θ̂r

U ′ (z) dz + τW (x̄−KR)− (1− Fr(θ̂r))∆U (KR) . Thus,

V [H]− V [G⋆] =

∫ KR

θ̂r

U ′ (z)
(
H (z)− Fr(θ̂r)

)
dz − τW

∫ x̄

KR
(1−H (z)) dz

+
(
1− Fr(θ̂r)−∆H (KR)

)
∆U (KR)

=

∫ KR

θ̂r

U ′ (z)
(
H (z)− Fr(θ̂r)

)
dz − τW

∫ KR

θ̂r

(
H (z)− Fr(θ̂r)

)
dz

+
(
1− Fr(θ̂r)−∆H (KR)

)
∆U (KR)

=

∫ KR

θ̂r

(U ′ (z)− τW )
(
H (z)− Fr(θ̂r)

)
dz + (1− Fr(θ̂r)−∆H (KR))∆U (KR) ,(18)

where the second equality follows
∫ x̄
θ̂r
H (z) dz =

∫ x̄
θ̂r
G⋆ (z) dz = Fr(θ̂r)

(
KR− θ̂r

)
+ x̄−KR, which

implies that
∫KR
θ̂r

(
H (z)− Fr(θ̂r)

)
dz =

∫ x̄
KR (1−H (z)) dz.

If
∫KR
θ̂r

(U ′ (z)− τW )
(
H (z)− Fr(θ̂r)

)
dz ≥ 0, then (18) directly implies the result in the theo-

rem, since 1−Fr(θ̂r) > ∆H (KR). We assume therefore that
∫KR
θ̂r

(τW − U ′ (z))
(
H (z)− Fr(θ̂r)

)
dz >
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0. Note that (18) then implies that

V [H]− V [G⋆] = (H(KR−)− Fr(θ̂r))

{
∆U (KR)−

∫ KR

θ̂r

(τW − U ′ (z))
H (z)− Fr(θ̂r)

H (KR−)− Fr(θ̂r)
dz

}
+
(
1−H

(
KR+

))
∆U (KR)

>
(
H
(
KR−)− Fr

(
θ̂r

))∫ KR

θ̂r

(
τW − U ′ (z)

)(
1− H (z)− Fr(θ̂r)

H (KR−)− Fr(θ̂r)

)
dz,(19)

where the inequality obtains from noting that

U (KR)− U
(
θ̂r

)
= W0 (KR)−W0

(
θ̂r

)
ϕ
(
θ̂r

)
> W0 (KR)−W0

(
θ̂r

)
= τW

(
KR− θ̂r

)
,

and therefore U (KR) − U
(
θ̂r

)
=
∫KR
θ̂r

U (z−) dz + ∆U (KR) > τW

(
KR− θ̂r

)
, implying that

∆U (KR) >
∫KR
θ̂r

(τW − U (z−)) dz.

The next claim is instrumental to prove that

∫ KR

θ̂r

(
τ − U ′ (z)

)(
1− H (z)− Fr(θ̂r)

H (KR−)− Fr(θ̂r)

)
dz > 0, (20)

and, therefore, from (19), that V [H]− V [G⋆] > 0.

Claim 3. Consider two functions w, J : [a, b] ⊆ R+ → R, satisfying (a) J nondecreasing,

continuous over [a, b), with J (a) = 0 and J (b) = 1, (b) w nonincreasing, and (c)
∫ b
a w (x) J (x) dx >

0. Then, we must necessarily have
∫ b
a w (x) (1− J (x)) dx > 0.

Proof. Using integration by parts, we have

∫ b

a
w (x) J (x) dx =

∫ b

a
w (x) dx−

∫ b

a

(∫ x

a
w (z) dz

)
︸ ︷︷ ︸

≡q(x)

dJ (x) , (21)

where we have used the assumption that J (a) = 0 and J (b) = 1. This equation implies that∫ b
a w (x) (1− J (x)) dx =

∫ b
a q (x) dJ (x) . Next, we note that part (a) implies that J (·) is a prob-

ability measure over [a, b]. Part (b) further implies that q (·) is globally concave. Construct an
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alternative measure

J̄ (x) ≡

(
b−

∫ b
a xdJ (x)

b− a

)
+

(∫ b
a xdJ (x)− a

b− a

)
· 1 {x = b} , ∀x ∈ [a, b] .

That is, J̄ allocates all probability mass to either x = a or x = b, and satisfies
∫ b
a xdJ̄ (x) =∫ b

a xdJ (x) . We observe that, by construction, J̄ ≻MPS J . The concavity of q (·) then implies that

∫ b

a
q (x) dJ (x) >

∫ b

a
q (x) dJ̄ (x) = q (b) ·

(∫ b
a xdJ (x)− a

b− a

)
.

Next, property (c) and equation (21) jointly imply that q (b) =
∫ b
a w (x) dx >

∫ b
a q (x) dJ (x) . The

last two inequalities, together with the fact that
∫ b
a xdJ(x)−a

b−a < 1, then imply that q (b) > 0, and

therefore
∫ b
a w (x) (1− J (x)) dx =

∫ b
a q (x) dJ (x) > 0, as claimed. ■

By letting w (z) ≡ τ −U ′ (z) and J (z) ≡ H(z)−Fr(θ̂r)
H(KR−)−Fr(θ̂r)

in claim 3, we conclude that (20) holds

and therefore V [H] > V [G⋆] . This, in turn, implies that G∗ solves the regulator’s problem.

Appendix C: Enrichments

D1 Refinement. Define first the set of best responses to an arbitrary security s, BR(s), as the set

of prices which are consistent with rationality of the investors under some belief about the type of

the firm:34

BR(s) ≡
{
P ≥ 0 :

EξH [s]

R
P [ω + P ≥ A⋆ (P )] ≥ P

}
.

Define then,

D(ξ|s) ≡
{
P ∈ BR(s) : V (P, s, ξ) > V

(
P ⋆
(
s⋆ξ
)
, s⋆ξ , ξ

)}
D0(ξ|s) ≡

{
P ∈ BR(s) : V (P, s, ξ) = V

(
P ⋆
(
s⋆ξ
)
, s⋆ξ , ξ

)}
.

34First-order stochastic dominance (which is implied by MLRP) means that{
P > 0 :

EH(s)

R
× P {ω + P ≥ A⋆ (P )} ≥ P

}
= ∪

µ∈∆Θ

{
P > 0 :

E(s;µ)
R

× P {ω + P ≥ A⋆ (P )} ≥ P

}
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The profile
{{

s⋆ξ

}
ξ∈Ξ

, µ⋆, P ⋆, A⋆

}
satisfies the D1 criterion if for any security s ∈ S with s ̸=

s⋆ξ all ξ ∈ Ξ, µ∗(s) is such that ∀ξ, ξ′
(
D(ξ|s) ∪ D0(ξ|s)) ⊂ D(ξ′|s)

)
⇒ µ∗(ξ|s) = 0.

Proofs Subsection 5.1.

As an intermediate step, I first characterize the set of equilibrium outcomes that arise in the fund-

raising game. Proposition7 below extends the results in Nachman and Noe (1994) to the current

environment, where the probability of default is endogenously determined by the interaction between

the two audiences.35 The proposition below shows that, although the celebrated uniqueness result

of Nachman and Noe (1994) may not hold in the current environment, some qualitative properties

remain true.

Proposition 7. Suppose that assumption (2) holds. Then,

1. All pooling equilibria are in debt (spool = min {θr, d} , d ≥ 0). Moreover, P̄ (E [spool]) ≤ K.

2. Suppose that EξH [θr] > KR > EξL [θr]; then, in any separating equilibrium, any security

issued by type ξH satisfies P
(
ssepH

)
≤ EξL [θr] < KR.

The proof is in the Online Appendix.

Proof of Proposition 3.

I prove that when the disclosure policy announces that mr =
{
θr ≥ θ̂r

}
, then the equilibrium

of the fund-raising stage consists of both firm types selling the whole risky asset at a price P =

E
[
θr|θr ≥ θ̂r

]
/R = K.

To see that this is an equilibrium, fix an arbitrary security s̃ and define ∆Vξ (P, s̃) as the

differential payoff obtained by type ξ by switching from pure equity, that is, s (·) = Id (·), to an

alternate security s̃ and receiving a price P for the latter. That is, ∆Vξ (P, s̃) ≡ Vξ (P, s̃,mr) −

Vξ (K, Id,mr) and therefore

∆Vξ (P, s̃) = R
{(
P − (d1 − 1) + Eξ [θr − s̃ (θr) |mr] /R

)
φ (P )− (K − (d1 − 1))

}
.

35The model in Nachman and Noe (1994) assumes that the seller of the asset (i.e., the firm in our environment)
survives with probability 1 if the latter raises an exogenous amount K and defaults, also with certainty, if the firm
does not.
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We show that beliefs that assign probability 1 to the type being ξL are consistent with D1. Clearly,

under such beliefs no firm type has incentive to deviate.

The next claim reduces the set of deviations that need to be considered.

Claim 1. Fix an arbitrary security s ∈ S, let sd ≡ min {θr, d} be the equivalent debt security from

type ξH ’s perspective, that is, sd is such that EξH [s− sd|mr] = 0. Then, ∆VξL (P, sd) ≤ ∆VξL (P, s).

Proof. Note that s− sd satisfies SCFB. By virtue of Lemma 3, which applies as MLRP is robust

to bayesian updating, and the definition of sd, we have that EξL [s− sd|mr] < 0. The result follows

from noting that ∆VξL (P, sd)−∆VξL (P, s) = EξL [s− sd|mr]φ (P ) ≤ 0.□

Claim 1 implies that the only deviations that need to be considered are those to debt securities.

Indeed, for any security s ∈ S, the equivalent debt security sd minimizes the set of prices that

would induce type ξL to deviate while keeping the set of prices for type ξH unchanged (since by

construction, ∆VξH (P, sd) = ∆VξH (P, s)). Under the D1 criterion, off-path beliefs at any security

s, must assign all weight to the firm type with the largest set of prices consistent with a profitable

deviation.36 Claim 1 thus proves that, to show that all possible deviations can be attributed to type

ξL, it is enough to restrict attention to debt securities.

Consider an arbitrary debt security s̃ = min
{
θr, d̃

}
with d̃ > 0. For any P ≥ K, we have that

∆Vξ (P, s̃) = (P −K)R + Eξ [θr − s̃ (θr) |mr] > 0, ξ ∈ Ξ. Next, we prove that ∆VξH (P, s̃) < 0 for

any P < K satisfying P ∈ BR (s̃). Define P̂− (z) ≡ min
{
P ≥ 0 : z

Rφ (P ) = P
}

to be the smallest

price consistent with selling a security with expected cashflows z.37 Note that ∆Vξ (P, s̃) is strictly

increasing in P . This means that, to show that ∆VξH (P, s̃) < 0 for any P ∈ BR (s̃) ∩ [0,K), it

is enough to prove that ∆VξH (sup {BR (s̃) ∩ [0,K)} , s̃) < 0. Let x ≡ EξH [s̃ (θr) |mr] and observe

that, under assumption (9), P̂− (x) = sup {BR (s̃) ∩ [0,K)}. Then, for any P ≤ P̂− (x) ,

∆VξH (P, s̃)

R
=

(
P − (d1 − 1) +

(
EξH [θr|mr]− x

)
/R
)
φ (P )− (K − (d1 − 1))

<
(
P̂− (x)− (d1 − 1) +

(
EξH [θr|mr]− x

)
/R
)
φ
(
P̂− (x)

)
− (K − d1 + 1)

< (K − (d1 − 1))φ
(
K−)− (K − d1 + 1) < 0,

36To be precise, the set of relevant prices are those in BR (s) =
{
P ≥ 0 : EH (s)

R
φ (P ) ≥ P

}
. This set remains

unchanged when considering the equivalent debt security sd, by construction.
37Under assumption (2), for any z > KR, there exist exactly two solutions to the equation z

R
φ (P ) = P , P̄ (z) and

P̂− (z), whereas for any z ≤ KR, there exists only one solution at P = P̄ (z) = P̂− (z).
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where the first inequality follows from the monotonicity of ∆VξH (P, s̃). The second inequality

follows from the fact that, by definition, P̂− (x)φ
(
P̂− (x)

)
< P̂− (x) = xφ

(
P̂− (x)

)
/R, and the

assumption in (9). As a result, [K,∞) = D (ξL|s̃) = D (ξH |s̃) and, therefore, beliefs satisfying

µ (s̃) = 1 {ξ = ξL} are consistent with D1. This completes the proof that s (·) = Id (·) is an

equilibrium of the fund-raising stage.□

Proof of Proposition 5.

Step 1. First, we prove that under the laissez-faire policy there exists an equilibrium of the fund-

raising stage where both firm types pool over the debt contact sD ≡ min {θr, D}, with D chosen

so that E [sD] /R = K. At this equilibrium, the market keeps its prior belief about ξ, µ0, when

observing security sD and thus offers a payoff equal to K for sD.

To see that this is an equilibrium, fix an arbitrary security s̃ and define ∆V ξ (P |s̃) as the

differential payoff obtained by type ξ by switching from security sD to s̃ and receiving a price P for

the latter. That is, ∆V ξ (P |s̃) ≡
(
PR+ Eξ [θr − s̃]

)
φ (P ) −

(
KR+ Eξ [θr − sD]

)
. We show that

beliefs that assign probability 1 to the type being ξL are consistent with D1. Clearly, under such

beliefs no firm type has incentive to deviate. The next claim reduces the set of deviations that need

to be considered.

Claim 2. Fix an arbitrary security s ∈ S, let sd ≡ min {θr, d} be such that EξH [s− sd] = 0. Then,

∆V ξL (P |sd) ≤ ∆V ξL (P |s).

Proof. By virtue of Lemma 3 and the definition of sd, we have that EξL [s− sd] < 0. The result

follows from noting that ∆V ξL (P |sd)−∆V ξL (P |s) = EξL [s− sd]ϕ (P ) ≤ 0.□

Claim 2 implies that the only deviations that need to be considered are those to debt contracts.

Indeed, for any security s ∈ S, the equivalent debt security sd minimizes the set of prices that

would induce type ξL to deviate while keeping the set of prices for type θH unchanged (since by

construction, ∆V ξH (P |sd) = ∆V ξH (P |s)). Under the D1 criterion, off-path beliefs at any security

s, must assign all weight to the firm type with the largest set of prices consistent with a profitable

deviation.38 Claim 2 can then be used to show that, if for a given debt contract sd we have that

38To be precise, the set of relevant prices are those in BR (s) =
{
P ≥ 0 : EH (s)

R
ϕ (P ) ≥ P

}
(see the equilibrium

definition in the Appendix). This set remains unchanged when considering the equivalent debt security sd, by
construction.
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D (ξL|sd) ∪ D0 (ξL|sd) ⊇ D (ξH |sd), then we must necessarily have that

D (ξL|s) ∪ D0 (ξL|s) ⊇ D (ξL|sd) ∪ D0 (ξL|sd) ⊇ D (ξH |sd) = D (ξH |s) .

Claim 2 thus proves that, to show that all possible deviations can be attributed to type θL, it is

enough to restrict attention to debt contracts.

Consider first deviations to debt contracts s̃ = min
{
θr, d̃

}
with d̃ > D. In this case, for any

P ≥ K, ∆V ξ (P |s̃) = (P −K)R−Eξ [s̃− sD] . The fact that s̃ is a debt contract implies that s̃−sD is

nondecreasing and therefore FOSD (implied by MLRP) means that EξH [s̃− sD] > EξL [s̃− sD] > 0.

As a result, there exists a price P̂ > K for which ∆V ξL
(
P̂ |s̃
)
> 0 > ∆V ξH

(
P̂ |s̃
)
. This implies

that beliefs satisfying µ (s̃) = 1 {ξ = ξL} are consistent with D1.

Now consider the case where s̃ is a debt contract with d̃ < K. For any P ≥ K, we have that

∆V ξ (P |s̃) = (P −K)R+Eξ [sD − s̃]. That s̃ is a debt contract implies that sD − s̃ is positive and

nondecreasing. Thus, ∆V ξ (P |s̃) > 0 for all ξ, and all P ≥ K. Next, for any P < K,

∆V ξH (P |s̃)−∆V ξL (P |s̃)

=
(
EξH [θr − s̃]− EξL [θr − s̃]

)
φ (P )−

(
EξH [θr − sD]− EξL [θr − sD]

)
<

(
EξH [θr − s̃]− EξL [θr − s̃]

)
φ̄−

(
EξH [θr − sD]− EξL [θr − sD]

)
=

(
EξH [θr − s̃]− EξL [θr − s̃]

EξH [θr]− EξL [θr]
− 1

)(
EξH [θr − sD]− EξL [θr − sD]

)
< 0,

where the first inequality follows from assumption (c) in Condition 1. The second equality is by

definition of φ̄. The last inequality follows from noting that EξH [s̃]−EξL [s̃] > 0 since s̃ is monotone

and signals are ordered according to MLRP. As a result, D (θL|s̃) ⊇ D (θH |s̃) and, therefore, beliefs

satisfying µ (s̃) = 1 {ξ = ξL} are consistent with D1. This completes the proof that sD is an

equilibrium of the fund-raising stage.

Step 2. Next, we prove that, under the sequentially optimal LST Γω, having both firm types

pooling over the security sD cannot be an equilibrium outcome. To show this, we prove that there

exists a profitable deviation. In fact, consider the security sϵ = min {y,D − ϵ} with ϵ > 0 small.

Similarly to the analysis above, define ∆V Γω

θ (P |s̃) as the differential payoff obtained by type θ when

switching from security sD to sϵ and receiving a price P , when the regulator runs the sequentially
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optimal LST Γω. That is, ∆V ξ
Γω (P |sϵ) ≡

(
PR+ Eξ [θr − sϵ]

)
φ̂ (P ) −

(
KR+ Eξ [θr − sD]

)
, where

φ̂ (P ) = P [ω ≥ ω̄ (P )] = 1−Fω (ω̄ (P )). For any P ≥ K, we have that ∆V ξ
Γω (P |sϵ) = (P −K)R+

Eξ [sD − sϵ] . Thus, ∆V ξ
Γω (P |sϵ) > 0 for any P ≥ K, and any ξ. Next, note that

∆V ξH
Γω (K|sϵ)−∆V ξL

Γω (K|sϵ) = EξH [sD − sϵ]− EξL [sD − sϵ] > 0,

as sD − sϵ is nondecreasing. We prove that, under the assumptions in Condition 1, there exists a

price Pϵ < K satisfying that ∆V ξH
Γω (Pϵ|sϵ) > 0 > ∆V ξL

Γω (Pϵ|sϵ).

To see this, let P̃ϵ < K be defined as the unique solution to ∆V ξH
Γω (P |sϵ) = 0. Note that the

definition of ω̄ (·) implies that lim
P→K−

φ̂ (P ) = 1 and, therefore, lim
ϵ→0+

P̃ϵ = K. Next, we rewrite

∆V ξ
Γω

(
P̃ϵ|sϵ

)
using the first-order Taylor expansion as

∆V ξ
Γω

(
P̃ϵ|sϵ

)
= ∆V ξ

Γω (K|sϵ) + ∂−P∆V
ξ
Γω (K|sϵ)

(
P̃ϵ −K

)
+ o

(
P̃ϵ −K

)
,

where ∂−P∆V
ξ
Γω (K|sϵ) ≡ lim

P→K−
lim
δ→0+

∆V ξ
Γω (P |sϵ)−∆V ξ

Γω (P−δ|sϵ)
δ represents the left derivative of ∆V ξ

Γω (P |sϵ)

at K−. Thus, we can express

∆V ξL
Γω

(
P̃ϵ|sϵ

)
= ∆V ξL

Γω (K|sϵ)− ∂−P∆V
ξL
Γω (K|sϵ)

∆V ξH
Γω (K|sϵ) + o

(
P̃ϵ −K

)
∂−P∆V

ξH
Γω (K|sϵ)︸ ︷︷ ︸

=K−P̃ϵ

+ o
(
P̃ϵ −K

)
. (22)

Next, assumption (b) in Condition 1, together with the fact lim
P→K−

ω̄ (P ) = 0, imply that

lim
P→K−

φ̂′ (P ) = lim
P→K−

fω (ω̄ (P )) ω̄′ (P ) = 0,

which in turn implies that

∂−P∆V
ξL
Γω (K|sϵ)

∂−P∆V
ξH
Γω (K|sϵ)

= lim
P→K−

Rφ (P ) +
(
PR+ EξL [θr − sϵ]

)
φ̂′ (P )

Rφ (P ) + (PR+ EξH [θr − sϵ]) φ̂′ (P )
= 1.

Thus, by choosing ϵ̃ sufficiently close to 0, we obtain that ∆V ξL
Γω

(
P̃ϵ̃|sϵ̃

)
< 0 = ∆V ξH

Γω

(
P̃ϵ̃|sϵ̃

)
,

which can be seen by taking the limit ϵ ↓ 0 in equation (22).

Finally, consider ˜̃ϵ sufficiently small so that EξH
(
s˜̃ϵ
)
> KR. Note that assumption (a) in
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Condition 1 implies that BR
(
s˜̃ϵ
)
=
[
0,EξH

(
s˜̃ϵ
)
/R
]
. By picking ϵ = min

{
ϵ̃, ˜̃ϵ
}

we then have that

D (θH |sϵ) ⊋ D (θL|ϵ). As a consequence, beliefs consistent with D1 necessarily assign µ (sϵ) =

1 {ξ = ξH} and therefore such a deviation receives a price P = EξH
(
s˜̃ϵ
)
/R > K which leads both

types to choose sϵ over sD. This proves that sD cannot be an equilibrium. The rest of the proof

follows from results (1) and (2) in Proposition 7 which show that (i) any pooling contract always

delivers a price weakly smaller than K, and that (ii) in any separating equilibrium, type ξH always

raises less than K.39 This concludes the proof of the proposition. □

Appendix D: General Model

Proof of Proposition 6.

The main difficulty of the proof is the fact that (11) may admit multiple solutions. We characterize

the properties of the smallest of such solutions. Fix θ̄j > 0 and define

a#j
(
ai; θ̄j

)
≡ inf

{
aj : θ̄jφ (ai, aj)− aj ≤ 0

}
,

whenever
{
aj : θ̄jφj (ai, aj)− aj ≤ 0

}
̸= ∅, and let a#j

(
ai; θ̄j

)
≡θ̄j otherwise. In other words,

a#j
(
ai; θ̄j

)
represents audience j investors’ (smallest) best response to ai and corresponds to the

smallest solution to the equation aj = θ̄jP [ω ≥ d− ai − aj ] whenever it exists. I omit henceforth

the dependence of a#j
(
ai; θ̄j

)
on θ̄j for brevity.

Claim 3. a#j
(
·; θ̄j

)
is strictly monotone and strictly convex for any ai ≤ âi

(
θ̄j
)
, whereas a#j

(
ai; θ̄j

)
=

θ̄j for any ai > âi
(
θ̄j
)
.

Proof of Claim 3. Let Ψj

(
ai; θ̄j

)
≡ min

0≤aj≤θ̄j
θ̄j (1− Fω (d− ai − aj)) − aj . By assumption (4),

we have that, for any ai > 0, Ψj (ai; x̄j) > 0 and lim
θ̄j→0+

Ψj

(
ai; θ̄j

)
< 0. Further, the envelope

theorem implies that Ψj is a monotone function. Let ¯̄θj < x̄j be the highest value of θ̄j for

which there exists ai so that Ψj

(
ai; θ̄j

)
≤ 0. Consider the case where θ̄j < ¯̄θj and let âi

(
θ̄j
)

be

implicitly defined by the equation Ψj

(
âi
(
θ̄j
)
; θ̄j
)
= 0. Intuitively, for any ai ≤ âi

(
θ̄j
)
, the set{

aj : θ̄jφj (ai, aj)− aj ≤ 0
}
̸= ∅ (and therefore there exists at least one solution to the equation

39Note that the proof of Proposition 1 is general and works not only for the laissez faire policy but also under the
sequentially rational ERP Γω.
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aj = θ̄jφ (ai, aj)). In turn, when ai > âi
(
θ̄j
)
, θ̄jφ (ai, aj) > aj for all aj ≤ θ̄j and hence audience

j investors’ best response is given by a#j (ai) = θ̄j . For the case where θ̄j ≥ ¯̄θj , we let âi
(
θ̄j
)
= 0,

and therefore for any ai > 0 = âi
(
θ̄j
)
, a#j (ai) = θ̄j .

Suppose that ai < âi
(
θ̄j
)

and therefore that a#j (ai) < θ̄j . I first show that a#j (·) is strictly

monotone and strictly convex over this region. Indeed, for any ai ≤ âi
(
θ̄j
)
, a#j (ai) is the smallest

solution to the equation aj = θ̄jφj (ai, aj). Under assumption (2), φ (·, ·) is a convex function,

and hence it is differentiable almost everywhere. The fact that Fω admits a monotone density (by

assumption (2)), further implies that φ (·, ·) is twice differentiable almost everywhere. We must

then have that

d2
aia

#
j (ai) =

−θ̄jf ′ω
(
d− ai − a#j

)(
1 + daia

#
j (ai)

)2
1− θ̄jfω

(
d− ai − a#j

) , (23)

where dai and d2
ai represent the first and second derivative with respect to ai, respectively. The

convexity of θ̄jφ (ai, aj)−aj in aj , coupled with the facts that
(
θ̄jφ (ai, aj)− aj

)∣∣
aj=0

> 0 and that

ai < âi
(
θ̄j
)
, jointly imply that the function θ̄jφ (ai, aj)−aj crosses 0, for the first time, from positive

to negative at a#j (ai), and therefore must have a nonpositive slope (except for the case wherein

ai = âi
(
θ̄j
)

in which case θ̄jφ
(
âi
(
θ̄j
)
, aj
)
− aj is tangent at 0). Thus, θ̄jfω

(
d− ai − a#j (ai)

)
≤ 1

with equality only for ai = âi
(
θ̄j
)
. From (23), we conclude that a#j (·) is a convex function for any

ai < âi
(
θ̄j
)
. This completes the proof of the claim. ■

Next, define Λi

(
ai; θ⃗

)
≡ θ̄iφ

(
ai, a

#
j

(
ai; θ̄j

))
−ai.Note, in particular, that Λ

(
ai; θ⃗

)
= θ̄iφ

(
ai, θ̄j

)
−

ai for any ai > âi
(
θ̄j
)
. We are interested in characterizing a⋆i

(
θ⃗
)
= inf

{
ai ≥ 0 : Λ

(
ai; θ⃗

)
≤ 0
}
.

Define θ̄##
i

(
θ̄j
)
≡ sup

{
θ̄i ≥ 0 : ∃ai ≤ âi

(
θ̄j
)
s.t.Λ

(
ai; θ⃗

)
≤ 0
}
. The monotonicity of Λi in θ̄i

implies that θ̄##
i

(
θ̄j
)

is well-defined.

Claim 4. a⋆i
(
·, θ̄j

)
is strictly monotone and strictly convex for any θ̄i ≤ θ̄##

i

(
θ̄j
)
, whereas a⋆i

(
θ̄i, θ̄j

)
=

θ̄i for any θ̄i > θ̄##
i

(
θ̄j
)
.

Proof of Claim 4. Consider any θ̄i < θ̄##
i

(
θ̄j
)
. By definition of θ̄##

i

(
θ̄j
)
, we must have that

a⋆i

(
θ⃗
)
< âi

(
θ̄j
)
. Furthermore, a⋆i

(
θ⃗
)

is the point at which Λi

(
ai; θ⃗

)
crosses 0 for the first time,

and it does it from positive to negative. Thus, we have that

a⋆i

(
θ⃗
)
= θ̄iφ

(
a⋆i

(
θ⃗
)
, a#j

(
a⋆i

(
θ⃗
)))

, (24)
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and, at the same time, θ̄ifω
(
d− a⋆i

(
θ⃗
)
− a#j

(
a⋆i

(
θ⃗
)))(

1 + daia
#
j (a⋆i )

)
≤ 1. The monotonicity

of a#j (ai) then implies that

θ̄ifω

(
d− a⋆i

(
θ⃗
)
− a#j

(
a⋆i

(
θ⃗
)))

< 1. (25)

Further, the monotonicity of Λi in θ̄i, implies that a⋆i
(
θ̄i, θ̄j

)
is monotone in θ̄i.

Next, we prove that for any θ̄i ≤ θ̄##
i

(
θ̄j
)
, a⋆i

(
θ⃗
)

is strictly convex in θ̄i. To see this, we

differentiate (24) twice to obtain

d2
θ̄i
a⋆i = 2fω

(
d− a⋆i − a#j (a⋆i )

)(
1 + daia

#
j (a⋆i )

)
dθ̄i
a⋆i

(
θ⃗
)

+θ̄ifω

(
d− a⋆i − a#j (a⋆i )

)(
d2
θ̄i
a⋆i

(
θ⃗
)
+ daia

#
j (a⋆i ) ·

(
dθ̄i
a⋆i

(
θ⃗
))2)

−θ̄if ′ω
(
d− a⋆i − a#j (a⋆i )

)(
1 + daia

#
j (a⋆i )

)2 (
dθ̄i
a⋆i

(
θ⃗
))2

,

where dθ̄i
and d2

θ̄i
represent the first and second derivative with respect to θ̄i, respectively. Using

inequality (25) and assumption (2), we conclude that, for any θ̄i ≤ θ̄##
i

(
θ̄j
)
, d2

θ̄i
a⋆i > 0.

Finally, we argue that for any θ̄i > θ̄##
i

(
θ̄j
)
, a⋆i

(
θ⃗
)

= θ̄i. Consider any θ̄i > θ̄##
i

(
θ̄j
)
. By

definition, âi
(
θ̄j
)

is not a function of θ̄i and further satisfies ∂
∂ai

Ψj

(
ai; θ̄j

)∣∣∣
ai=âi(θ̄j)

= 0. This

implies that θ̄jfω
(
d− âi − a#j (âi)

)
= 1. Assumption (2) then implies that, if we define

ψj

(
ai, aj ; θ̄j

)
≡ θ̄j (1− Fω (d− ai − aj))− aj ,

then

θ̄j − (d− âi)− ψj

(
âi, a

#
j (âi) ; θ̄j

)
= ψj

(
âi, d− âi; θ̄j

)
−Ψj

(
âi; θ̄j

)
=

∫ d−âi

a#j (âi)

∂

∂aj
ψj

(
âi, x; θ̄j

)
dx

=

∫ d−âi

a#j (âi)

(
θ̄jfω (d− âi − x)− 1

)︸ ︷︷ ︸
>0

dx > 0.
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We conclude that, for any θ̄j ,

âi
(
θ̄j
)
> d− θ̄j +Ψj

(
âi; θ̄j

)
≥ d− θ̄j . (26)

That θ̄i > θ̄##
i

(
θ̄j
)

implies that Λ
(
âi; θ⃗

)
> 0. This means that θ̄i ≥ θ̄iφ

(
âi, a

#
j (âi)

)
> âi.

Now, recall that, for any ai > âi
(
θ̄j
)
, a#j (ai) = θ̄j . This fact coupled with inequality (26) jointly

imply that, for any ai > âi
(
θ̄j
)
, Λi

(
ai; θ⃗

)
= θ̄i − ai. We conclude that for any ai ∈

(
âi
(
θ̄j
)
, θ̄i
)
,

Λi

(
ai; θ⃗

)
> 0. Thus, the first and only point at which Λi reaches 0 is at ai = θ̄i. We conclude that

a⋆i

(
θ⃗
)
= θ̄i for any θ⃗ where θ̄i > θ̄##

i

(
θ̄j
)
. This completes the proof of the claim. ■

Finally, we argue that, for any θ⃗,
(
a⋆i , a

#
j (a⋆i )

)
corresponds to the smallest solution of (11) and

therefore corresponds to our notion of equilibrium. That is,
(
a∗i (θ⃗), a

∗
j (θ⃗)

)
=
(
a⋆i (θ⃗), a

#
j (a

⋆
i (θ⃗))

)
.

Indeed, the definition of a#j implies that, taking a⋆i ≤ âi as given, a#j (a⋆i ) is the smallest solution to

θ̄jφ
(
a⋆i , a

#
j (a⋆i )

)
= a#j (a⋆i ), implying both the optimality of audience j investors’ action and the

adversarial selection. Similarly, whenever a⋆i ≤ âi, we have θ̄iφ
(
a⋆i , a

#
j (a⋆i )

)
= a⋆i . The convexity

of θ̄iφ
(
·, a#j (a⋆i )

)
− ·, coupled with inequality (25) implies that a⋆i is the first crossing and hence

also corresponds to the adversarial selection.

That a∗i (θ⃗) has the properties stated in the proposition follows directly from claim 4. The

definition of θ̄##
i

(
θ̄j
)

implies that, for any θ̄i ≥ θ̄##
i

(
θ̄j
)
, a#j

(
a⋆i
(
θ̄i, θ̄j

))
= θ̄j . That a∗j (θ⃗) =

a#j (a
⋆
i (θ⃗)) is strictly monotone and strictly convex for any θ̄i ≤ θ̄##

i

(
θ̄j
)

follows from combining

claims 3 and 4. This concludes the proof of the proposition. □

Proof of Theorem 2.

The proof is analogous to the proof of Theorem 1, and hence omitted.
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Internet Appendix (Not for Publication)

This document contains proofs and additional results for the manuscript “Persuading Multiple Audi-

ences: An Information Design Approach to Banking Regulation”. All numbered items (i.e., sections,

subsections, lemmas, conditions, propositions, and equations) in this document contain the prefix

“S”. Any numbered reference without the prefix “S” refers to an item in the main text. Please refer

to the main text for notation and definitions. The notation and definitions are the same as in the

main text.

Section S1: Discussion: Strategic complementarities and Financial

Constraints

I discuss the role of strategic complementarities and financial constraints in inducing the amplifi-

cation mechanism and the consequent convexity of the regulator’s payoff in the bank’s perceived

fundamentals. I argue that financial constraints are sufficient to generate the amplification mecha-

nism but not necessary. I then argue that strategic complementarities are necessary for the key the

economic mechanism in the paper.

Financial Constraints are sufficient but not necessary

First, consider the slightly more general version of the model where AM investors price the asset

according to P = E [s (θr)] ηi (P,A)P [ω + P +A ≥ d1] , where the function ηi (P,A) is increasing

and convex. That is, each AM investor’s valuation for the security depends on the financial support

of both audiences, ST creditors and AM investors, beyond their effect through the bank’s liquid-

ity constraint. This parameterization can capture network externalities, productivity spillovers,

scalability of the bank’s projects, etc.

Further, assume that Fω is uniform over [0, 1], the limiting case where Fω is both weakly concave

and convex. Similar arguments to the one establishing property (c) in Proposition 1 (and, more

generally, Proposition 6 in Section 6) imply that as long as φ (P,A) ≡ η (P,A)P [ω + P +A ≥ d1]

is increasing and (weakly) convex, the equilibrium price P ⋆ (x) is strictly increasing and strictly

convex in x = E [s (θr)], and therefore so is ϕ̃ (x) ≡ P [ω + P ⋆ (x) +A (x) ≥ d1] . This implies
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that the main results extend to the case where for cases where F ′′
ω (ω) is sufficiently small (i.e.,

Fω is not "too convex"). The role of the concavity of Fω consists in guaranteeing that each AM

investor’s incentives to pay a larger price do not decrease when either ST creditors or the rest of

AM investors pledge more funds to the bank. In this sense, assumption 2 ensures that the strategic

complementarities are sufficiently strong.

Furthermore, the amplification mechanism manifests even in the case where d1 = 0. This is the

case where financial constraints are no longer relevant and the bank is perfectly liquid , regardless

the distribution of Fω. Indeed, in that case P = E [s (θr)] · ηi (P,A) , and the convexity of P ⋆ (x)

still prevails, inducing the regulator’s preference for transparent disclosures.

This discussion suggests that stringent financial constraints, as implied by assumption 2, are

sufficient to induce the amplification mechanism but are not necessary . The key economic property

driving the result is the manifestation of strategic complementarities in the audiences’ preferences.

Strategic Complementarities are necessary

Now, consider the case where strategic complementarities do not emerge. I slightly modify the

model and assume that AM investors are protected against the bank’s default, i.e., the bank ring-

fences the risky asset (e.g., the bank securitizes the risky asset and sell it to AM investors). In

this environment, AM investors price the asset according to P = E [θr] /R. Suppose further that

the regulator has a simple payoff structure and would like to maximize the bank’s probability of

survival. That is, UR (E [θr]) = P [P + ω ≥ d1 (1−A)] . Assume that Fω is uniform over [0, 1]. ST

creditors’ optimal action consists of running whenever E [θr] < K. Thus, the regulator’s ex-ante

payoff, when E [θr] < K, is given by

UP (E [θr]) = P [E [θr] /R+ ω ≥ d1 (1−A0)]

= E [θr] /R+ 1− d1 (1−A0) ,

which is affine in E [θr]. In contrast, when E [θr] ≥ K, ST creditors are dissuaded from running and

UP (E [θr]) = 1.

The regulator’s optimal policy consists of a binary rule which announces whether θr ≥ θ̂r or

θr < θ̂r, where θ̂r = θ̂r (Fω, Fr) is implicitly defined as the unique solution to E
[
θr|θr ≥ θ̂r

]
≥ K.
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The regulator’s optimal policy consists in pooling as many high states as possible as long as the

posterior estimate induced by the knowledge that θr belongs to this set is weakly higher than K (the

Hirshleifer effect). In terms of informativeness, the optimal policy is opaque and has a monotone

pass/fail structure. When the prior distributions are sufficiently favorable so that, in the absence of

any announcement, E [θr] ≥ K, then the optimal policy is complete opacity and does not disclose

any information to the investors.

Strategic complementarities provide an strict preference for transparency for low realizations

of θr. Indeed, observe that starting from this model, one can add strategic complementarities

by removing the ring-fencing assumption, thereby letting AM investors’ payoff depend on the ST

creditors’ behavior. In that case, P = (E [θr] /R)P [P + ω ≥ d1 (1−A0)] . Thus, we obtain

P ⋆ (E [θr]) =
E [θr] (1− d1 (1−A0))

(R− E [θr])

which is strictly convex in E [θr] over the critical region (0,KR). Thus, the regulator’s ex-ante

payoff, for E [θr] < K, is given by UP (E [θr]) = P ⋆ (E [θr])+1−d1 (1−A0) , also strictly convex in

E [θr] over the critical region. In turn, when E [θr] ≥ K, UP (E [θr]) = 1. The optimal policy in this

case is full transparency for any θr < θ̂r, and opacity for all θr ≥ θ̂r. Furthermore, the binary policy

described above for the case with ring-fencing is strictly suboptimal . Thus, the regulator strictly

benefits from transparency when strategic complementarities are present, but does not otherwise.

Section S2: Regulatory Disclosures under Externalities from Default

Suppose that the bank is too big or too interconnected to fail and hence there are social costs

associated with default. For simplicity, I also assume that the bank is solvent but potentially

illiquid if a bank run occurs (i.e., Fr

(
θ#
)
= 0). The regulator obtains a positive payoff W0(A) > 0

when default is successfully avoided and a payoff of 0 otherwise. Further, I assume that W0(·) is

nondecreasing meaning that conditional on avoiding default the regulator would like to minimize

the possibility of inefficient runs.

UR(ω̃, A)Ext ≡W0(A)× 1 {ω̃ ≥ d1 (1−A)} .
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For each posterior expectation of the asset’s cashflows, θ̄r = E [θr|mr = mr], the regulator’s payoff

becomes

E
[
W0

(
1
{
P̄
(
x⋆
(
θ̄r
))

≥ KR
})

1
{
ω ≥ ω̄

(
P̄
(
x⋆
(
θ̄r
)))}]

,

or equivalently as

W0

(
1
{
P̄
(
x⋆
(
θ̄r
))

≥ KR
})
ϕ
(
x⋆
(
θ̄r
))
.

Under assumptions (2) and (3), by Proposition 2, the regulator’s objective becomes

E
[
UR

Ext(ω,E [θr|m] , A)
]
=


W0 (0)ϕ

(
θ̄r
)

if E [θr|m] ∈
[
θ#,KR

)
W0 (1) if E [θr|m] ≥ KR

.

Thus, the regulator’s problem reduces to

max
GΓy

∫ ∞

θ#
W0

(
1
{
θ̄r ≥ KR

})
ϕ
(
θ̄r
)
GΓ (dθr)

s.t: Fr ⪰MPS G
Γ.

Theorem 3. Suppose that assumptions (1) - (3) hold. Then, the optimal policy Γ⋆
Ext is fully trans-

parent for any θr < θ̂r, and fully opaque θr ≥ θ̂r, where θ̂r is implicitly defined by E
[
θr|θr ≥ θ̂r

]
=

KR.

Proof. Consider the function

p
(
θ̄r
)
≡


W0 (0)ϕ

(
θ̄r
)

if θ̄r ∈
[
θ#, θ̂r

]
W0 (0)ϕ

(
θ̂r

)
+

(
W0(1)−W0(0)ϕ(θ̂r)

KR−θ̂r

)(
θ̄r − θ̂r

)
if θ̄r > θ̂r.

By Proposition 1, p (·) is convex for any θ̄r ≥ θ#. Moreover, p
(
θ̄r
)
≥ W0

(
1
{
θ̄r ≥ KR

})
ϕ
(
θ̄r
)

for

all θ̄r ≥ θ#. Construct the following cdf:
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G̃
(
θ̄r
)
≡


Fr

(
θ̄r
)

if θ̄r ∈
[
θ#, θ̂r

]
Fr

(
θ̂r

)
if θ̄r ∈

(
θ̂r,KR

)
1 if θ̄r ≥ KR.

By construction,

suppG̃ =
[
θ#, θ̂r

]
∪ {KR} =

{
θ̄r : p

(
θ̄r
)
=W0

(
1
{
θ̄r ≥ KR

})
ϕ
(
θ̄r
)}
.

Finally, by definition, θ̂r is such that
∫ x̄
θ̂r
θ̄rdFr

(
θ̄
)
= KR

(
1− Fr

(
θ̂r

))
. This implies that

∫ x̄

θ#
p
(
θ̄r
) (

dG̃
(
θ̄r
)
− dFr

(
θ̄r
))

= p (KR)
(
1− Fr

(
θ̂r

))
−
∫ x̄

θ̂r

p
(
θ̄r
)
dFr

(
θ̄r
)

= W0 (1)
(
1− Fr

(
θ̂r

))
−W0 (0)ϕ

(
θ̂r

)(
1− Fr

(
θ̂r

))
−

W0 (1)−W0 (0)ϕ
(
θ̂r

)
KR− θ̂r

∫ x̄

θ̂r

(
θ̄r − θ̂r

)
dFr

(
θ̄r
)

=
(
W0 (1)−W0 (0)ϕ

(
θ̂r

))(
1− Fr

(
θ̂r

))
−

W0 (1)−W0 (0)ϕ
(
θ̂r

)
KR− θ̂r

(KR− θ̂r

)(
1− Fr

(
θ̂r

))
= 0.

Moreover, Fr ≻MPS G̃ as G̃ fully discloses θr < θ̂r and pools all θr ≥ θ̂r. Thus, condition (2) - (4)

in Dworczak and Martini (2019) are satisfied. The desired conclusion follows from Theorem 1 in

that paper.

Section S3: Omitted Proofs for Section 5

Definition 2. We say a function g : Y ⊆ R → R satisfies single crossing from above (SCFA),

if there exists some y ∈ Y such that g(y) < 0, then ∀ỹ > y, g(ỹ) ≤ 0. Similarly, we say that

h : Y ⊆ R → R satisfies single crossing from below (SCFB), if the following holds true: if there

exists some y ∈ Y such that h(y) > 0, then ∀ỹ > y, h(ỹ) ≥ 0.

Lemma 3. Suppose that g : Y ⊆ R → R satisfies SCFA and that f(y, t) is log-supermodular for
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all (y, t) ∈ Y × T ⊆ R2. Define ϕ(t) ≡
∫
Y g(y)f(y, t)dy and let y0 ≡ inf {y ∈ Y : g(y) < 0}.Then,

∀t̃ > t ∈ T, ϕ
(
t̃
)
= 0 ⇒ ϕ(t) > 0.

Proof. That f(y, t) is log-SM implies that f(·,t)
f(·,t̃) is non-increasing. Then,

ϕ(t) =

∫
Y
1 {y ≤ y0} g(y)

f(y, t)

f(y, t̃)
f(y, t̃)dy +

∫
Y
1 {y > y0} g(y)

f(y, t)

f(y, t̃)
f(y, t̃)dy

≥
(
f(y0, t)

f(y0, t̃)

)
ϕ
(
t̃
)

which implies the result.

Proof of Proposition 7

Proof. The proof below applies regardless of whether the regulator has disclosed information about

the fundamentals ϑ⃗ = (θr,ω). Assume that the survival probability can be written as P
[
ω ≥ ω♯(z)

]
,

where ω♯(·) represents a decreasing function, continuously differentiable for almost all z < K, and

with ω♯(τ) = 0, for all z ≥ K. In the context of Section 3 and 4, ω♯ (P ) = ω̄ (P ), while in the

context of section 5, ω♯ = ω̄LST. Define Π(z) as the set of prices which induce a nonnegative profit

to AM investors when a security of expected value z is purchased. That is,

Π(z) ≡
{
P ≥ 0 : (z/R)P

[
ω ≥ ω♯(P )

]
≥ P

}
.

Part 1.a. We first rule out pooling in securities other than debt contracts. Suppose that there

exists an equilibrium of the fund-raising game,
{
{σξ}ξ∈Ξ , µ, P,A

}
, and any nontrivial security

ŝ ∈ S offered with probability σξ (ŝ) > 0, for all ξ ∈ Ξ. Suppose by contradiction that ŝ is not a

debt contract. Define the debt security sD ≡ min {θr, D} where D is such that EξH [sD − ŝ] = 0.

Note that sD − ŝ satisfies single crossing from above (SCFA) and hence lemma 3 implies that

EξL [sD − ŝ] > 0 = EξH [sD − ŝ]. Thus,

EξH [θr − sD]− EξL [θr − sD] > EξH [θr − ŝ]− EξL [θr − ŝ] . (27)

Next, let P ♯ (z) ≡ supΠ (z) and define ∆V ξ(P ) as the difference in payoffs for type ξ obtained

by switching to security sD, and sell it at price P , instead of issuing security ŝ at price P (ŝ) ≡
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P ♯
(
Eξ̂ [ŝ]

)
, with ξ̂ = σH (ŝ) / (σL (ŝ) + σH (ŝ)) ∈ (0, 1). That is,

∆V ξ
(
P̃
)

= V
(
P̃ , sD, ξ

)
− V (P (ŝ) , ŝ, ξ)

=
(
P̃R−R (d1 − 1) + Eξ [θr − sD]

)
P
[
ω ≥ ω♯

(
P̃
)]

−
(
P (ŝ)R−R (d1 − 1) + Eξ [θr − ŝ]

)
P
[
ω ≥ ω♯ (P (ŝ))

]
, ξ ∈ Ξ.

Inequality (27) together with the fact that θr − sD and θr − ŝ are monotone then imply that

∆V ξH
(
P̃
)
−∆V ξL

(
P̃
)

=
(
EξH [θr − sD]− EξL [θr − sD]

)
P
[
ω ≥ ω♯

(
P̃
)]

−
(
EξH [θr − ŝ]− EξL [θr − ŝ]

)
P
[
ω ≥ ω♯ (P (ŝ))

]
> 0, ∀P̃ ≥ P (ŝ) . (28)

Next, the fact that Fω is nondecreasing and right-continuous implies that Π(·) is compact and

strictly increasing for any τ ≥ 0.40 Thus, P (ŝ) = max Π
(
Eξ̂ [ŝ]

)
< max Π

(
EξH [ŝ]

)
= max BR (sD) ,

where the first equality follows from the compactness of Π and the definition of P (ŝ). The inequal-

ity arises from the strict monotonicity of Π and the MLRP ordering. The second equality is by

definition of BR (·) and the construction of sD.

Finally, note that by construction, we also have that ∆V ξH (P (ŝ)) = 0, whereas the fact that

EξL [θr − ŝ] > EξL [θr − sD] implies that ∆V ξL (P (ŝ)) < 0. The fact that P (ŝ) ∈ Π
(
Eξ̂ [ŝ]

)
⊂

BR (sD) and the result in (28) then imply that D (ξL|sD) ∪ D0 (ξL|sD) ⊂ D (ξH |sD) . As a conse-

quence, market beliefs consistent with D1 must necessarily assign µ = 1 {ξ = ξH}. This implies that

the market prices the security sD at P ♯
(
EξH (sD)

)
> P (ŝ) and therefore both types have incentives

to deviate and issue sD instead, which contradicts the assumption that
{
{σξ}ξ∈Ξ , µ, P,A

}
is an

equilibrium.

Proof. Part 1.b. Next, we show that under pooling no type raises more than K. Suppose, by

contradiction, that there exists an equilibrium of the fund-raising game,
{
{σξ}ξ∈Ξ , µ, P,A

}
, and

any nontrivial security sd ≡ min {θr, d} with σξ (sd) > 0, for all ξ ∈ Ξ with P (sd) > K. That

is, define P ♯ (z) ≡ supΠ (z) and let ξd ≡ σH (sd) / (σL (sd) + σH (sd)). and assume P (sd) =

40We say that a correspondence φ : R+ → 2R+ is strictly increasing if, for any z, z′ ∈ R+, with z < z′, φ (z) ⊊ φ (z′) .
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P ♯
(
Eξd [sd]

)
> K. Consider the alternative debt contract sϵ = min {θr, d− ϵ} with ϵ > 0 small so

that (a) EξH [sϵ] > Eξd [sd], and (b) Eξd [sd − sϵ] < R (P (sd)−K). We show that both types can

profitably deviate to sϵ. Observe that sd − sϵ is an increasing function. FOSD then means that

EξH [sd − sϵ] > EξL [sd − sϵ] , or equivalently,

EξH [θr − sϵ]− EξL [θr − sϵ] > EξH [θr − sd]− EξL [θr − sd] . (29)

Let ∆V ξ
(
P̃ ; sϵ, sd

)
≡ V

(
P̃ , sϵ, ξ

)
− V (P (sd) , sd, ξ) as the difference in type ξ’s payoffs obtained

by switching to security sϵ, and sell it at price P̃ , instead of issuing security sd at price P (sd). That

is,

∆V ξ
(
P̃ ; sϵ, sd

)
= V

(
P̃ , sϵ, ξ

)
− V (P (sd) , sd, ξ)

=
(
P̃R−R (d1 − 1) + Eξ [θr − sϵ]

)
P
[
ω ≥ ω♯

(
P̃
)]

−
(
P (sd)R−R (d1 − 1) + Eξ [θr − sd]

)
P
[
ω ≥ ω♯ (P (sd))

]
.

Next, the fact that EξH [sϵ] > Eξd [sd] implies that Π
(
Eξd [sd]

)
⊊ Π

(
EξH [sϵ]

)
= BR (sϵ) , and hence

P (sd) ∈ BR(sϵ). Moreover, given that sϵ is smaller than sd, we must have that ∆V ξ(P (sd)) > 0

for both ξ ∈ Ξ, and therefore that D(ξL|sϵ),D(ξH |sϵ) ̸= ∅. Next, inequality 29 implies that

∆VH

(
P̃ ; sϵ, sd

)
−∆VL

(
P̃ ; sϵ, sd

)
=

(
EξH [θr − sϵ]− EξL [θr − sϵ]

)
P
[
ω ≥ ω♯

(
P̃
)]

−
(
EξH [θr − sd]− EξL [θr − sd]

)
P
[
ω ≥ ω♯ (P (sd))

]
︸ ︷︷ ︸

=1

> 0, ∀P̃ ≥ K, (30)

Finally, let P̃ϵ ≡ P (sd) − Eξd [sd − sϵ] /R. Condition (b) above implies that P̃ϵ ∈ [K,P (sd)). This

means that EξH [sϵ]P
[
ω ≥ ω♯

(
P̃ϵ

)]
= EξH [sϵ] > Eξd [sd] = P (sd)R > P̃ϵR, and therefore P̃ϵ ∈
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BR (sϵ). Moreover, by construction, we have that ∆V ξH
(
P̃ϵ

)
> 0 > ∆V ξL

(
P̃ϵ

)
. Indeed,

∆V ξL
(
P̃ϵ

)
= V

(
P̃ϵ, sϵ, ξL

)
− V (P (sd) , sd, ξL)

=
(
P̃ϵR+ EξL [θr − sϵ]

)
−
(
P (sd)R+ EξL [θr − sd]

)
= EξL [sd − sϵ]− Eξd [sd − sϵ] < 0

< EξH [sd − sϵ]− Eξd [sd − sϵ]

=
(
P̃ϵR+ EξH [θr − sϵ]

)
−
(
P (sd)R+ EξH [θr − sd]

)
= ∆V ξH

(
P̃ϵ

)
,

where the second and fifth equalities follow from the fact P̃ϵ, P (sd) > K, the third and fourth

equalities obtain by definition of P̃ϵ, and the two inequalities follow from FOSD. Thus, D (ξL|sϵ) ∪

D0 (ξL|sϵ) ⊂ D (ξH |sϵ), and consequently market beliefs consistent with D1 must assign µ (ξ = ξH) =

1. Together with condition (a), this implies that both types can profitably deviate to sϵ. This is a

contradiction and therefore P (sd) ≤ K.

Part 2. Consider any security sH issued only by type ξH . Assume by contradiction that

P (sH)R > EξL [θr]. Denote by sL any security issued with positive probability by type ξL. That

this is a separating equilibrium, together with the assumption EξH [θr] > KR > EξL [θr], means

that P (sL) = maxΠ
(
EξL [sL]

)
< EξL [sL] /R < K. Hence,

P (sH)R > EξL [θr] > P (sL)R+ EξL [θr − sL] , (31)

which implies that type ξL has incentives to mimic type ξH . Indeed,

V (P (sH) , sH , ξL)− V (P (sL) , sL, ξL)

=
(
P (sH)R−R(d1 − 1) + EξL [θr − sH ]

)
P
[
ω ≥ ω♯ (P (sH))

]
−
(
P (sL)R−R(d1 − 1) + EξL [θr − sL]

)
P
[
ω ≥ ω♯ (P (sL))

]
>

(
P (sH)R+ EξL [θr − sH ]−

(
P (sL)R+ EξL [θr − sL]

))
×

×P
[
ω ≥ ω♯ (P (sL))

]
> 0,

This is a contradiction and hence P (sH) ≤ EξL (θr|mr) /R < K.
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Proof of Proposition 4

The solution to the regulator’s problem is characterized by the binary-monotone policy Γω
⋆ =

({G,B}, πω⋆ ), which satisfies πω⋆ {G|ω} = 1{ω > ω̄LST (P )}, where ω̄LST(P ) is the smallest liq-

uidity cutoff such that when ST creditors learn that the liquidity is above the cutoff, it becomes

dominant to rollover.41 That is,

ω̄LST(P ) ≡ inf
{
ω̃ ≥ 0 : E

[
∆u
(
ϑ⃗, P, 1

)
|ω > ω̃

]
> 0
}
. (32)

Assume the firm raises P during the fund-raising stage. For any announcement mω ∈ Mω, let

Fω|m (·|mω) be the posterior cdf characterizing the beliefs about ω. Denote by E
{
∆u
(
ϑ⃗, P, 1

)
|mω

}
the expected posterior utility of an ST creditor who observes the announcement mω and believes

that all ST creditors will run on the firm. Under adversarial coordination, when ST creditors have

homogeneous beliefs, the regulator’s task reduces to convincing ST creditors that rolling over is a

dominant strategy. That is, that their expected payoff from rolling over is positive, even if all other

ST creditors run.42

Every score mω = mω generates an adversarial posterior estimate (APE), E
[
∆u
(
ϑ⃗, P, 1

)
|mω

]
.

Denote by GΓω the distribution of APE induced by stress test Γω, and let Gω

FD(·;P ) be the distribu-

tion induced by the full-disclosure policy (i.e., the policy that follows the rule Γω
FD ≡ {Mω = Ω, πωFD},

with πωFD (mω|ω) = 1 {mω = ω}).

The next proposition shows that the problem of finding the optimal stress test is equivalent to

finding the distribution of posterior expected adversarial utilities that maximizes the mass assigned

to the event {ω : E [u (ω + P, 1) |mω] > 0}. Intuitively, under adversarial coordination, when ST

creditors have homogenous beliefs, the regulator’s task reduces to convincing ST creditors that it is

dominant to rollover. That is, that their expected payoff if they rollover the firm’s debt is positive,

even if the rest of ST creditors choose to run on the firm.

Proposition S1. Fix P ≥ 0. The stress test that maximizes the regulator’s payoff which solves
41Rigorously, the problem does not admit an optimal policy. If the regulator announces that ω > ω̄ (P ), then under

adversarial coordination, all ST creditors run on the firm because E (u (ω + P, 1) |ω > ω̄ (P )) = 0. Nonetheless, the
regulator can guarantee herself a payoff arbitrarily close to that induced by Γω

⋆ . With abuse of notation, I refer to
Γω
⋆ as the optimal policy.
42Inostroza and Pavan (2023) show, in an environment with heterogeneous beliefs, that the optimal disclosure

perfectly coordinates ST creditors’ actions. The current specifications capture the perfect coordination property while
simplifying the intricacies of characterizing the optimal policy in the richer environment.
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max
Γω={πω ,Mω}

E
[
W0

(
Ā (P,mω)

)
1
{
ω + P ≥ Ā (P,mω)

}]
s.t: Ā (P,mω) = 1 {E [u (ω + P, 1) |mω] ≤ 0} ,

is characterized by the distribution of APE, GΓω , which among all mean preserving contractions of

the full-disclosure distribution, Gω
FD, maximizes 1−GΓω

(0). That is,

max
GΓω

1−GΓω
(0)

s.t: Gω
FD ⪰MPS G

Γω
.

Proof. Below I prove a sequence of lemmas that induce the result.

Lemma S1. Fix the amount raised by the firm, P ≥ 0. The problem of designing a stress test

that maximizes the regulator’s payoff :

max
Γω={πω ,Mω}

E
[
W0

(
Ā (P,mω)

)
1
{
ω + P ≥ Ā (P,mω)

}]
s.t: Ā (P,mω) = 1 {E [u (ω + P, 1) |mω] ≤ 0} ,

is equivalent to maximizing the probability that ST creditors find it dominant to rollover (i.e., max-

imizing P [E [u (ω + P, 1) ; Γω] > 0]). The regulator’s problem can thus be written as

max
Γω={πω ,Mω}

∫
Ω×Mω

1 {E [u (ω + P, 1) |mω] > 0}πω (dmω|ω)Fω(dω). (33)

Proof. Consider an arbitrary stress test Γω = {πω,Mω}. Assume that there exists some score

m̄ for which (i) Ā (P, m̄) = 1, and (ii) P [ω : ω + P ≥ 1 and πω (m̄|ω) > 0] > 0. That is, score

m̄ induces all ST creditors to withdraw early and satisfies that the set of realizations of ω for

which the firm survives even if all ST creditors withdraw early, has positive measure. Consider

then the alternative policy Γ̂ω =
{
π̂ω, M̂ω =Mω ∪ {m̄0, m̄1}

}
constructed as follows. For any

m ∈ Mω different from m̄, π̂ω (m|·) = πω (m|·). Additionally, π̂ω (m̄0|ω) = πω (m̄|ω) 1{ω+P≥1} and

π̂ω (m̄1|ω) = πω (m̄|ω) 1{ω+P<1} for all ω ∈ Ω. Policy Γ̂ω improves the probability that the firm
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survives and decreases the number of ST creditors who run when observing message m̄0 . Therefore,

Γ̂ω weakly dominates Γω. As a result, assuming that the optimal policy maximizes the probability

that ST creditors refrain from attacking is without loss.

The next lemma shows that the distribution of posterior expected adversarial utilities induced

by stress test Γω, GΓω , corresponds to a mean-preserving contraction of the distribution associated

with the full-disclosure policy Γω
FD, Gω

FD, and a mean-preserving spread of the no-disclosure policy,

Gω
∅ . That is, Gω

FD ⪰MPS G
Γω ⪰MPS G

ω
∅ , where the partial order ⪰MPS is defined as follows.

Definition 3. Let F and G be distribution functions with support in X ⊆ R. We say that F

dominates G in the MPS order, F ⪰MPS G, if
∫
X φ(x)F (dx) ≥

∫
X φ(x)G(dx) for any convex

function φ in X.

Lemma S2. [Blackwell] Let Γω
1 = (Mω

1 , π
ω
1 ) and Γω

2 = (Mω
2 , π

ω
2 ) be two stress tests. Assume

that there exists z :Mω
1 ×Mω

2 → [0, 1] such that:

(i) πω2 (m2|ω) =
∑

Mω
1
z (m1,m2)π

ω
1 (m1|ω) , ∀ω ∈ [0, 1], ∀m2 ∈Mω

2

(ii)
∑

Mω
2
z(m1,m2) = 1, ∀m1 ∈Mω

1 .

Then the distributions of posterior expected adversarial utility induced by Γω
1 and Γω

2 are such

that GΓω
1 ⪰MPS G

Γω
2 .

Proof. Let fmi ∈ ∆[0, 1] be the posterior pdf after observing message mi ∈ Mω
i , and πωi (mi) =∫

πωi (mi|ω) fω(ω)dω the total probability of observing disclosure mi, under policy Γω
i , i ∈ {1, 2}.

Observe that bayesian updating together with property (i) imply that, for any message m2 ∈ Mω
2

with πω2 (m2) > 0, we have

fm
2
(ω) =

∑
m1∈Mω

1

(
πω1 (m1) z (m1,m2)

πω2 (m2)

)
fm

1
(ω).

This implies that, for any convex function φ,
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∑
m2∈Mω

2

πω2 (m2)φ

(∫ 1

0
ωfm2(ω)dω

)
=

∑
m2∈Mω

2

πω2 (m2)φ

 ∑
m1∈Mω

1

(
πω1 (m1) z (m1,m2)

πω2 (m2)

)∫ 1

0
ωfm1(ω)dω


≤

∑
m2∈Mω

2

∑
m1∈Mω

1

πω1 (m1) z (m1,m2)φ

(∫ 1

0
ωfm1(ω)dω

)

=
∑

m1∈Mω
1

πω1 (m1)φ

(∫ 1

0
ωfm1(ω)dω

)
,

where the inequality obtains from Jensen’s inequality and the last equality from property (ii). As a

result, GΓω
1 ⪰MPS G

Γω
2 .

Lemma S2 shows that stress tests that are more informative in the Blackwell sense induce

distributions of APE that dominate in the MPS order. As a result, Gω
FD ⪰MPS G

Γω ⪰MPS G
ω
∅ .

Consider then the problem of maximizing the likelihood that ST creditors keep pledging to the

firm. Using lemmas S1 and S2, the policy-maker’s problem can be reformulated as maximizing

P [E [u (ω + P, 1) ; Γω] > 0] = 1−GΓω
(0;P )

among all possible disclosure policies over ω. That is,

max
GΓω

1−GΓω
(0)

s.t: Gω
FD ⪰MPS G

Γω
.

This concludes the proof of Proposition S1. □

Next, for any stress test Γω, and any amount P ≥ 0 raised by the firm in period 1, define the

integral function GΓω
(t;P ) ≡

∫ t
ũ=u(0,P,1)G

Γω
(ũ;P ) dũ. Let Gω

FD and Gω
∅ be the integral functions

associated with the full-disclosure policy, Γω
FD, and no-disclosure policy, Γω

∅ , respectively. The set

of feasible stress tests Γω, coincides with the set of convex functions that lie between Gω
FD and Gω

∅ .

Lemma S3. Consider an arbitrary stress test Γω. Then, GΓω
(t;P ) is convex and satisfies

Gω
FD(t) ≥ GΓω

(t) ≥ Gω
∅ (t) for all t ∈ [u(P, 1), u(1 + P, 1)]. Conversely, any convex function h(·),

satisfying Gω
FD(t) ≥ h(t) ≥ Gω

∅ (t) for all t ∈ [u(0, P, 1), u(1, P, 1)] corresponds to the integral function

of some disclosure policy Γω.
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Proof. Under full-disclosure, each disclosure mω = ω generates a degenerate posterior distribution

with a mass of 1 at u (ω, P, 1), which also coincides with the posterior expected adversarial utility

induced by mω. As a result, Gω
FD (t;P ) =

∫ t
u(0,P,1)G

ω
FD (ũ;P ) dũ, where

Gω
FD (ũ;P ) =

∫ ũ

u(0,P,A=1)

fω
(
u−1 (z;P, 1)

)
∂ωu (u−1 (z;P, 1) , τ, 1)

dz

corresponds to the distribution of u(ω, P, 1) under full-disclosure. Next, notice that under no-

disclosure, the posterior mean remains unchanged and equal to E (u (ω + P, 1) |∅). Thus, Gω
∅ (t;P ) =∫ t

u(0,P,1) 1 {ũ ≥ E (u (ω, P, 1) |∅)} dũ. To save on notation, hereafter we will omit the dependence on

P of all disclosure policies and associated distributions.

Any disclosure policy Γω induces an integral function GΓω
(t) ≡

∫ t
u(0,P,1)G

Γω
(ũ) dũ. That

Gω
FD ⪰MPS G

Γω ⪰MPS G
ω
∅ implies that Gω

FD(t) ≥ GΓω
(t) ≥ Gω

∅ (t) for all t ∈ [u(P, 1), u(1 + P, 1)],

which can be seen from applying the definition of ⪰MPS to the convex function max {ω − t, 0}.

Moreover, GΓω is convex since GΓω is non-decreasing. Conversely, any non-decreasing, convex func-

tion h in [u(P, 1), u(1 + P, 1)], which satisfies that Gω
FD(t) ≥ h(t) ≥ Gω

∅ (t) can be induced by some

policy Γω. To see this note that h is differentiable almost everywhere and its right derivative is

always well-defined since it is convex. Let G (ũ) ≡ h′ (ũ+) be the right-derivative of h at ũ. Observe

next that lim
ũ→∞

G (ũ) = 1, and thus G is a distribution. Finally, note that Gω
FD is a mean-preserving

spread of G and therefore there must exist a policy that induces it by Strassen’s Theorem (See

Theorem 1.5.20 in Müller and Stoyan (2002)).

The regulator’s problem is thus equivalent to finding the policy Γω which generates the convex

function GΓω , between Gω
∅ and Gω

FD, with minimal slope at 0. The solution to the regulator’s

problem is thus given by the monotone-binary policy Γω
⋆ = ({0, 1}, πω⋆ ) that satisfies πω⋆ (0|ω) =

1 {u(ω + P, 1) ≥ ū(P )} = 1{ω ≥ ω̄ (P )}, where ū(P ) corresponds to the point at which Gω
FD is

tangent to the the (convex) integral function with minimal slope to the left of 0. The value of ū(P )

can also be characterized by ū(P ) = u (ω̄ (P ) + P, 1), where ω̄(P ) represents the liquidity cutoff
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defined as43

ω̄(P ) ≡ inf {ω̃ ≥ 0 : E [u (ω + P, 1) |ω ≥ ω̃] > 0} . (34)

This proves Proposition 4.

Section S4: The case with N > 2 Audiences.

Consider the case with N > 2 audiences. The analysis in the main text imply that, at any equilib-

rium, investors’ action depend on the prior F only through the vector of prior expectations E
[
θ⃗
]

and are given by

a∗i

(
E
[
θ⃗
])

= E [θi]φ
(
a∗i

(
E
[
θ⃗
])
, a∗j

(
E
[
θ⃗
]))

= E [θi]
(
1− Fω

(
d− a∗i

(
E
[
θ⃗
])

− a∗−i

(
E
[
θ⃗
])))

, ∀i ∈ {1, ..., N} (35)

where a∗−i

(
E
[
θ⃗
])

≡
∑

j ̸=i a
∗
j

(
E
[
θ⃗
])

.

7.1 Convexity and Stability

We show that, under adverse market conditions as captured by assumption (2), the complementar-

ities between audiences lead to optimal actions which are convex in the expected fundamentals of

the economy. Fix an audience i ∈ {1, ..., N} and, to ease notation, let θ̄i ≡ E [θi] and θ̄−i ≡ E [θ−i],

i ∈ {1, ..., N}.

As in the baseline model, there may be multiple outcome profiles consistent with equilibrium

play. Indeed, the system (35) may have multiple solutions. We restrict attention henceforth to

stable equilibria (Dixit (1986)).

Definition 4. [Stability] The outcome profile a⃗ = (ai, a−i) is a stable equilibrium of the game if

it solves (35) and, in addition, satisfies44

43To see this, note that the policy Γω
⋆ induces a distribution of posterior means GΓω

⋆ which assigns positive prob-
ability to only two points, which coincide with the points at which GΓω

⋆ changes slope. To see that the first point
at which GΓω

⋆ changes slope coincides with E [u (ω + P, 1) |ω < ω̄(P )], note that the tangency condition implies that
GΓω

⋆ (ū(P )) = Gω
FD (ū(P )), where the RHS equals Fω (ω̄(P )).

44The assumption that a⃗ satisfies (36) implies inequality (36-v) in (Dixit (1986)). Indeed, define αi ≡ ∂2Ui

∂a2
i

=
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(
N∑
i=1

θ̄i

)
fω (d− ai − a−i) < 1. (36)

Proposition 8. Suppose assumption 2) holds and that fω is continuous. Then, in any stable

equilibrium, for any i ∈ {1, ..., N}, and any θ̄−i, there exists θ̄##
i

(
θ̄−i

)
≤ x̄i, such that (a) for any

θ̄i ≤ θ̄##
i

(
θ̄−i

)
, and any j ̸= i, a∗j

(
·, θ̄−i

)
is both strictly increasing and strictly convex in θ̄i, whereas

(b) for any θ̄i > θ̄##
i

(
θ̄j
)
, a∗j

(
θ̄i, θ̄j

)
= θ̄j.

Proof. Under assumptions (2), φ (·) is a convex function, and hence it is differentiable almost ev-

erywhere, for all i ∈ {1, ..., N}. We must then have

dθ̄i
a∗i = φ

(
a∗i , a

∗
−i

)
+ θ̄i

(
∂iφ

(
a∗i , a

∗
−i

)
dθ̄i
a∗i +

〈
∂−iφ

(
a∗i , a

∗
−i

)
, dθ̄i

a∗−i

〉)
,

= φ
(
a∗i , a

∗
−i

)
+ θ̄ifω

(
d− a∗i − a∗−i

) N∑
j=1

dθ̄i
a∗j

 ,∀i ∈ {1, ..., N} (37)

where dθ̄i
represents the derivative with respect to θ̄i (i.e., d

dθ̄i
), ∂i the partial derivative against

Ai (i.e., ∂
∂Ai

), ∇−i is the vector of partial derivatives against A−i, and ⟨·, ·⟩ represents the inner

product in RN−1. Similarly,

dθ̄j
a∗i = θ̄i

(
∂iφ

(
a∗i , a

∗
−i

)
dθ̄j

a∗i +
〈
∇−iφ

(
a∗i , a

∗
−i

)
, dθ̄j

a∗−i

〉)
,

= θ̄ifω
(
d− a∗i − a∗−i

)( N∑
k=1

dθ̄j
a∗k

)
(38)

Using (37) and (38), we conclude that

N∑
j=1

dθ̄i
a∗j =

φ
(
a∗i , a

∗
−i

)
1−

(∑N
i=1 θ̄i

)
fω (d− ai − a−i)

≥ 0,

θ̄ifω (d− ai − a−i)− 1 and βi ≡ ∂2Ui
∂a−i∂ai

= θ̄ifω (d− ai − a−i) . Then,

0 < 1 +

N∑
i=1

βi

αi − βi
=

ΠN
i=1 (αi − βi) +

∑N
i=1 βiΠj ̸=i (αj − βj)

ΠN
i=1 (αi − βi)

=
(−1)N + (−1)N−1

(∑N
i=1 θ̄i

)
fω (d− ai − a−i)

(−1)N

= 1−

(
N∑
i=1

θ̄i

)
fω (d− ai − a−i) .
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with strict inequality whenever a∗i + a∗−i < d. The inequality follows from the fact that
(
a∗i , a

∗
−i

)
is

stable. Equalities (37) and (38) then imply that a∗i
(
θ̄i, θ̄−i

)
is nondecreasing in

(
θ̄i, θ̄−i

)
.

Next, differentiating (37) once more with respect to θ̄i, we obtain that, for all i ∈ {1, ..., N},

d2
θ̄i
a∗i = 2

〈
∇φ, dθ̄i

a⃗∗
〉
+ θ̄i

(〈
∇φ

(
a∗i , a

∗
j

)
, d2

θ̄i
a⃗∗
〉
+
(
dθ̄i
a⃗∗
)T

(Hφi)
(
dθ̄i
a⃗∗
))

= 2fω
(
d− a∗i − a∗−i

) N∑
j=1

dθ̄i
a∗j


+θ̄i

fω (d− a∗i − a∗−i

) N∑
j=1

d2
θ̄i
a∗j

− f ′ω
(
d− a∗i − a∗−i

) N∑
j=1

dθ̄i
a∗j

2 . (39)

where d2
θ̄i

represents the second-order derivative with respect to θ̄i (i.e., d2

dθ̄2i
). Similarly, for any

j ̸= i, we can show that,

d2
θ̄i
a∗j = θ̄j

(〈
∇φ

(
a∗j , a

∗
−j

)
, d2

θ̄i
a∗
〉
+
(
dθ̄i
a⃗∗
)T

(Hφ)
(
dθ̄i
a⃗∗
))
.

= θ̄j

fω (d− a∗i − a∗−i

) N∑
j=1

d2
θ̄i
a∗j

− f ′ω
(
d− a∗i − a∗−i

) N∑
j=1

dθ̄i
a∗j

2 . (40)

Using (39) and (40), we obtain that

N∑
j=1

dθ̄i
a∗j =

2fω
(
d− a∗i − a∗−i

) (∑N
j=1 dθ̄i

a∗j

)
−
(∑N

i=1 θ̄i

)
f ′ω
(
d− a∗i − a∗−i

) (∑N
j=1 dθ̄i

a∗j

)2
1−

(∑N
i=1 θ̄i

)
fω (d− ai − a−i)

≥ 0,

with strict inequality whenever a∗i + a∗−i < d. The inequality obtains from assumption (2) and the

fact that
(
a∗i , a

∗
−i

)
is stable. The result then follows from the continuity of fω and the monotonicity

of the optimal strategies.
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