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Abstract

A liquidity-constrained asset owner designs an asset-backed security to raise funds from

an informed liquidity supplier. Information-insensitive securities reduce the liquidity

supplier’s information rents. The optimal screening mechanism with financial securities

consists of a debt menu with face values monotonically ordered in the liquidity supplier’s

valuation. We leverage this characterization to show that when the liquidity supplier’s

private information becomes more accurate (Lehmann [1988]), the issuer optimally offers

debt securities with smaller face values. Surprisingly, the concavity of debt on the asset’s

future cashflows implies that the issuer may benefit from trading with a more informed

liquidity supplier. Our results challenge the conventional notion that, when trading

securities, the informed party should obtain an information-sensitive security and suggest

a novel rationale for the emergence of venture debt and the prevalence of collateralized

lending.
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1 Introduction

Financial institutions often sell securities to raise funds and fulfill their short-term obliga-

tions. In such transactions, liquidity providers typically possess valuable private informa-

tion regarding the securities’ underlying assets. However, which type of securities should a

liquidity-constrained institution sell when facing informed investors? Despite the prevalence

of economic environments where the buy-side has superior private information (e.g., venture

capital funds, management buyout groups, restructuring teams, publishers, etc), the primitive

question of how to effectively screen investors endowed with superior private information using

financial securities remains unresolved. This paper tries to close this gap and provides some

novel insights.

The heterogeneity in investors’ valuations for financial assets is prevalent in financial mar-

kets.1 This heterogeneity can originate from multiple sources. It may emerge, e.g., as a

response to discriminating tax rules, as the result of asymmetric information among differ-

ent market participants, as the output of heterogeneous technologies to process private and

public information, or as the result of exposures to idiosyncratic, nontradeable risks. In this

paper, we study how an asset owner can screen an investor’s private information by optimally

choosing the security design.

To illustrate, consider a startup trying to raise funds from a venture capital fund (VC). VCs

specialize in funding and coaching similar projects, and they usually have superior information

about the potential for growth and the future cashflows that could be generated.2 Startups,

on the other hand, struggle to raise cash to fund their initial operations and are therefore

strongly liquidity-constrained. To raise liquid funds, entrepreneurs usually sell claims on the

startup’s future cashflows (i.e., securities) in exchange for cash. If the entrepreneur could

design the securities to be sold to the VC to maximize the amount of funds raised, which

security would she choose?

This paper addresses a key theoretical question in financial economics: how to optimally

screen investors endowed with superior private information using flexible financial securities.

The main insights from the existing theoretical literature focus largely on the case where

the asset owner is the one endowed with private information. The standard intuition there

suggests that the informed party should keep an information-sensitive security, e.g., an equity

1Bagwell [1991] and Bagwell [1992] document investor heterogeneity in the context of stock repurchases;
Bradley et al. [1988] find evidence of heterogeneity in the context of corporate acquisitions. Bernardo and
Cornell [1997], in turn, extend the analysis to the case of complex derivatives.

2Several papers find evidence of VC firms repeatable skills. See, e.g., Kaplan and Schoar [2005] and Ewens
and Rhodes-Kropf [2015]. The performance persistence might originate from access to networks (Hochberg
et al. [2007]), high levels of industry experience (Hellmann and Puri [2002]), or screening skills (Sorensen
[2007]).
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stake or a call option.3 We demonstrate, however, the existence of a fundamental rationale

for the issuer to offer information-insensitive securities to informed investors. By doing so,

the issuer can screen the investor’s private information more effectively and reduce the latter’s

information rents.

To gain some intuition, consider the following example. There is an issuer (she) and a

liquidity supplier (he) who can be of two types, namely, either H or L. Assume that H’s

beliefs about the asset’s future cashflows allocate more probability mass to higher realizations

relative to the issuer, whereas L’s beliefs allocate less probability mass to higher realizations

than the issuer (formally, H’s beliefs dominate the issuer’s beliefs, which in turn dominate L’s

beliefs according to the monotone likelihood ratio order (MLR)). This could be either because

the asset is more (less) productive when managed by type H (type L), or simply because H

(L) is more (less) optimistic about the asset’s prospects. We show that when the issuer is

subject to liquidity constrains, she is better off by selling debt instruments.

To see the intuition, suppose that the issuer designs a menu of securities and respective

payments,
{(
sL, pL

)
,
(
sH , pH

)}
, where si represents the security and pi represents the payment

designed for type i ∈ {H,L}. The issuer can replicate the expected cashflows of sL with a

debt contract, sLd , which promises fixed payout d > 0 and seniority if this amount is not met.

If the face value d is chosen so that L is indifferent between sL and sLd , then type H and the

issuer value sLd strictly less than sL. Indeed, the latter assign more probability mass (relative

to L), to high cashflow realizations. For these realizations, however, sLd always offers the same

flat payout, d. In other words, sLd minimizes the upside, which are also the states that type

H and the issuer deem more likely relative to L. Thus, by changing the original security sL

for the debt contract sLd , the issuer reduces the information rents that she needs to leave to

type H to prevent him from mimicking type L. The issuer can therefore increase the price

charged to H for security sH , without spoiling his incentives. Furthermore, the issuer values

the security she sells to type L, sLd , strictly less than sL, and therefore she keeps a larger share

of the future cashflows. Thus, by designing a debt security for the low type, the issuer both

raises more funds and at the same time sells smaller securities.

The heuristic described above is general in that it can be extended to the case with an

arbitrary number of liquidity supplier’s types. Using a replication argument, we show that

any incentive compatible and individually rational mechanism can be dominated by another

3There are different rationales for this. In Nachman and Noe [1994], keeping information-sensitive security
increase the issuer’s skin in the game and are therefore a form to costly signal her private information.
In DeMarzo and Duffie [1999], Biais and Mariotti [2005], the optimal strategy involves selling debt as a
commitment device for the issuer not to exploit her future private information when trading with the liquidity
supplier. Debt offers a fixed payout unaffected by cashflow outcomes during favorable times, while providing
maximum downside protection.
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mechanism where all types purchase debt securities. The optimal mechanism consists of a

menu of debt contracts, with face values monotonically ordered in the liquidity supplier’s

type. That is, the more optimistic liquidity supplier types purchase larger amounts of debt.

Our main technical insight is that any menu of securities (with their associated prices) can be

dominated by modifying the original securities for debt securities while guaranteeing that the

incentive constraints are not spoiled either locally or globally. Indeed, with more than two

types, the intuition provided above may fail as the incentives of low types to mimic high types

are exacerbated when the latter are offered debt securities. We show that the securities in

any incentive compatible mechanism must satisfy a property analogous to the monotonicity

condition in the one-dimensional case. We leverage this property to show that by correctly

permuting the securities for debt contracts, all incentive constraints are in fact relaxed. This

last observation allows the issuer to increase the price of the securities being sold and hence

maximizes her revenue.

We note that the heuristic described above does not contradict the main insights in the

security design literature that postulate that more informed agents should expose themselves

relatively more to the asset’s cashflows to signal their private information (Leland and Pyle

[1977], Ross [1977], Myers and Majluf [1984], etc.). In fact, under the optimal mechanism,

more optimistic liquidity supplier types purchase larger fractions of the underlying asset (i.e.,

debt with higher face values), which obviously expose them to right-tail risk. Perhaps sur-

prisingly, however, we find that exploiting the information sensitivity of securities to screen

the liquidity suppliers private information is completely ineffective and is strictly dominated

by information-insensitive instruments.

Following a direct mechanism design approach, we extend the classical results in the op-

timal screening literature to environments with a rich allocation space in which the issuer

has the flexibility design financial securities, infinite-dimensional objects.4 One of the tech-

nical challenges we face in extending the classical results to our environment is that we lose

the structure usually assumed in those earlier models.5 We provide a full characterization

of the mechanism design problem with securities. The advantage of this approach vis-à-vis

the former results in the literature is that it allows us to find analytical expressions for the

issuer’s expected revenue and the liquidity supplier’s information rents. This characterization

4The classical literature focuses on the case where the issuer either decides whether to sell the whole asset
to the liquidity supplier, potentially in a stochastic manner. This is equivalent to asset selloffs or equity stakes.
Instead, we propose enriching the allocation space to encompass all types of securities (e.g., debt, options,
arbitrary tranches, etc.).

5It is standard to assume that the buyer’s payoff has increasing differences in the allocation and the buyer’s
type. This assumption, together with some regularity conditions, jointly imply that local incentive constraints
imply the global constraints. There is no obvious extension of this property to the infinite-dimensional space
of all securities.
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is instrumental to derive novel monotone comparative statics results relating the underlying

information structure and the issuer’s ability to raise external financing.

We show that when the liquidity supplier’s private information about the asset’s future

cashflows becomes more accurate (Lehmann [1988]), the issuer optimally responds by selling

smaller debt securities. Intuitively, when the liquidity supplier’s information improves, the

issuer is forced to give up more information rents to the liquidity supplier. To minimize the

incentives of high types to mimic low types, the issuer truncates the securities designed to

the low types at a lower level. Perhaps surprisingly, however, this does not mean that the

issuer’s ability to raise external funding deteriorates when facing investors endowed with more

accurate signals. We document a novel countervailing effect associated with the geometry

of the optimal securities. The concavity of debt on the asset future cashflows, implies that

improving the accuracy of the liquidity supplier’s information increases the liquidity suppliers

valuation for these securities. This effect is similar to a reduction in uncertainty for a risk-

averse agent, which increases the utility she derives from the security. We show by means

of an example that under some conditions, the second effect prevails, leading to the striking

conclusion that an issuer with the ability to flexibly design financial securities may benefit from

facing more informed investors, whereas the same issuer constrained to sell linear instruments

as in the tradition of the screening literature (e.g., the whole asset, equity stakes) suffers

from trading with the more informed investors. Our results emphasize the stark differences in

the economics of optimal screening between financial products and other types of assets, and

call for prudence when extrapolating economic intuitions. The characterization of optimally-

designed financial mechanisms appears to be critical in understanding the efficiency gains

arising from enhanced transparency in financial markets.

We argue that accuracy (Lehmann [1988]) is an appealing notion of informativeness in our

environment for three reasons. First, provided that signals have the MLR property, accuracy

is less restrictive than the Blackwell ordering in that it compares more signal structures.6

Furthermore, accuracy implies the standard notion of informativeness usually assumed in the

information economics literature.7 Second, the concept of accuracy is tightly related to the

idea of interdependence. When an experiment is more accurate, the comovement between

fundamentals and signals becomes stronger. Finally, the Lehmann ordering compares experi-

ments (i.e., conditional distributions) as opposed to comparing joint distributions. Intuitively,

6Indeed, provided that signals satisfy the MLRP, any two signals ordered according to Blackwell are also
ordered according to Lehmann [1988]. When the state space is binary, both notions of informativeness coincide
(see, e.g., Jewitt [2007]). More recently, Kim [2022] showed that Lehmann domination is closely related to the
concept of quasigarbling, a generalization of information garbling.

7Fixing the prior example, if two experiments are ordered according to Lehmann, then the distribution of
posterior estimates induced by the experiments’ signals are ranked in convex order. See Proposition 2 below.
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we want to change the quality of the liquidity supplier’s information without changing the

distribution of the asset’s future cashflows or the distribution of liquidity supplier types, as

this would change the underlying economic environment. We show that starting from a fixed

(marginal) distribution of the assets’ cashflows, one can increase the accuracy of the liquid-

ity supplier’s private information while preserving the (marginal) distribution of the liquidity

supplier’s private signals. Combined with our first observation, this implies that increasing

signals’ accuracy increases the liquidity supplier’s private information about the fundamen-

tals without changing the quality of underlying asset or the ex-ante distribution of liquidity

supplier types, thus making the comparative statics exercise coherent. To the best of our

knowledge, this is the first paper to perform monotone comparative statics using information

orders in the context of security design.

Interestingly, the prediction that liquidity-constrained asset owners use debt instruments

to raise funds from informed investors is consistent with some empirical regularities. In the

case of VC funding, our predictions are consistent with the emergence of venture debt. In-

deed, according to Tykvová [2017], approximately one-third of the current venture-backed

companies use debt instruments to raise funds. A plausible explanation for this new trend is

that as VC funds become more competitive, they retain lower information rents. Concomitant

with the emergence of venture debt is the fact that VCs with a founder-friendly reputation

have gained prominence in the last decade (Ewens et al. [2018], Lerner and Nanda [2020]).

Contrary to the former governance approach, which entailed the intensive monitoring of star-

tups, VCs are adopting a hands-off approach, leaving much discretion to the entrepreneurs.

These regularities seem consistent with the idea that startups have greater bargaining power

vis-à-vis VC funds. Our theory shows that such startups can limit the VCs’ information rents

by choosing venture debt financing.

In the context of structured financial products, such as the market for mortgage-backed

securities (MBS), where the buyers of these products are generally large investment banks,

brokerage firms, and institutional investors who typically have substantial expertise in valuing

the securities through their knowledge of secondary market conditions and their access to

proprietary valuation models.8 Our predictions are broadly consistent with the prevalence of

tranching in securitization, wherein investors are promised a fixed face value and payments

contingent on the underlying assets’ cashflows when the face value is not met. Finally, our

predictions are also consistent with the experience of the Resolution Trust Corporation (RTC)

and the FDIC, which are institutions in charge of disposing the assets of failed financial

institutions. These institutions typically face investors with superior information about the

8Bernardo and Cornell [1997] analyze data from an auction of collateralized mortgage obligations (CMO)
and find statistical evidence of a large dispersion in investors’ valuation for the securities.
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specific assets. Their objective is to maximize the proceeds of these sales to pay back the

original stakeholders of the failing institutions. Using pooled assets auctions and securitized

vehicles, they have dramatically increased the funds raised from these sales.

Our findings concerning the relationship between the informational environment and the

issuer’s capacity to raise external financing, contributes valuable insights to the ongoing pub-

lic debate regarding the advantages and disadvantages of altering information dissemination

environment in financial markets. In practice, the accuracy of liquidity suppliers’ information

is influenced by various factors, such as the introduction of new regulations, like Regulation

AB, which imposes disclosure requirements for asset-backed securities offerings. This disclo-

sure enables liquidity providers to assess the security’s value based on their unique preferences

and beliefs. Additionally, advancements in technological tools used by market participants

to process information and the due diligence efforts of liquidity suppliers can also influence

the accuracy of of the available information. While our paper remains agnostic on the de-

terminants of the underlying information structure and prevailing information asymmetries,

our analysis establishes sufficient primitive conditions to identify how changes in investors’

information accuracy could impact the financial institutions’ funding capacity.

The rest of the paper is organized as follows. Below, we wrap up the introduction by

discussing how our paper connects with the rest of the literature. Section 2 describes the

primitives of the model. Section 3 contains the derivation of our first result establishing the

optimality of menus of debt contracts and the characterization of the optimal mechanism.

We further discuss the relation between securities’ information sensitivity and the liquidity

supplier’s information rents. In section 4, we explore how changes in the accuracy of the

liquidity supplier’s private signal affects the optimal contracts, the amount of funds raised,

and the agents’ payoffs. All omitted proofs are relegated to the Appendix.

Related Literature

This paper relates to several strands of the literature. First, it contributes to the broad

literature on security design under asymmetric information (see, e.g., Nachman and Noe

[1994], DeMarzo and Duffie [1999], Biais and Mariotti [2005], DeMarzo and Fishman [2007],

etc.).9 We depart from those earlier models by assuming that when trading securities, it is the

liquidity supplier who is endowed with private information. In the context of informed liquidity

suppliers, DeMarzo et al. [2005] study general securities auctions with multiple (N ≥ 2)

9Some recent work within this areas of study include Malenko and Tsoy [2020] and Lee and Rajan [2018].
They explore optimal security design under robust requirements.

7



bidders.10 Following an indirect mechanism approach, they show that among all general

symmetric mechanisms,11 the first-price auction where buyers are restricted to bid call options

(i.e., the buyer purchases a debt contract) maximizes the issuer’s revenue. Burkart and Lee

[2016] study a similar problem to ours but restrict the set of securities available to the issuer.

Our result that the optimal mechanism consists of a debt menu is consistent with the intuition

behind these papers. We provide a full characterization of the unrestricted solution to the

liquidity-constrained issuer’s problem with a single bidder. Following a direct mechanism

approach, we show that the optimality of the menus of debt contracts originates on the fact

that debt minimizes the liquidity suppliers’ information rents and therefore allow the issuer

to raise more funds. Our characterization is instrumental in performing novel comparative

statics to shed light how changes to the primitives of the informational environment affect the

optimal mechanism and the issuer’s ability to raise external funding.

Axelson [2007] studies security auctions with multiple bidders when the issuer is liquidity-

constrained. He finds that when the issuer restricts attention to a sealed-bid, uniform-price,

K-units auction, debt is optimal. Liu [2016] follows a mechanism design approach similar

to the one proposed in this paper and study optimal auctions when the issuer is constrained

to sell equity securities. Liu and Bernhardt [2021] provide sufficient conditions under which

equity plus cash auctions achieve optimality in the context of target-initiated takeovers. More

recently, Yuan [2020] tackles a similar problem wherein multiple issuers compete by selling

securities to informed liquidity suppliers. Building on the fact that competition among sellers

leads to the winner’s curse, she finds that there exists an equilibrium where all issuers sell debt

securities. We show that the optimality of debt occurs even in the absence of competition.

In our environment, the issuer has all the bargaining power and optimally designs a menu of

debt contracts. We show that the optimality of debt originates from the fact that it allows

the issuer to minimize information rents.

Our paper is also related to the emerging literature on information and security design.

Yang [2020] studies a security design problem wherein the liquidity supplier can acquire costly

information. He shows that a debt contract is uniquely optimal and minimizes the incentives

to produce private information. In an informed issuer model, Daley et al. [2022] show that

reducing the degree of asymmetric information between the issuer and the liquidity supplier

leads the former to issue information-sensitive securities. Vanasco [2017], Szydlowski [2021]

and Inostroza and Tsoy [2022] study the case where the issuer can design both the security

10They refer to auctions designed by the issuer as formal auctions. They also study games where the bidders
have the freedom to bid with arbitrary securities, which they dub informal auctions.

11A general symmetric mechanism (GSM) is a symmetric incentive-compatible mechanism in which the
highest type wins and pays a security chosen at random from a given set, S. The randomization can depend
on the realization of types but not on the identity of the bidders.
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and the information structure. Vanasco [2017] studies the case where issuer chooses both

the security and the effort to improve the quality of the asset. She demonstrates that the

adverse selection induced by the issuer’s superior information mitigates the issuer’s moral

hazard problem when monitoring the quality of the pool of assets. Szydlowski [2021] shows

that if the issuer’s objective consists of raising a prespecified amount of funds, she is indifferent

between all the securities yielding the same payoff. Inostroza and Tsoy [2022] show that when

the issuer designs both the security and information structure, information-sensitive securities

dominate debt instruments and pure equity maximizes the issuer’s payoff.

The paper is also related to the literature on information orders and monotone comparative

statics under uncertainty. Quah and Strulovici [2009] show that the Lehmann [1988] order is

closely related to a natural order on utility functions, namely, the so-called interval dominance

order. We show that the geometry of the optimal securities implies that information rents are

ranked according to the interval dominance order and leverage this to show that the optimal

mechanism is monotone in the Lehmann [1988] order. Persico [2000] and Ganuza and Penalva

[2010] study the effect of increasing the accuracy of the agents’ signals in auctions. Kim [1995]

and Jewitt [2007] study the effect of increasing the informativeness of agents’ signals in moral

hazard problems, whereas Dewatripont et al. [1999] do so using career concerns model. More

recently, Mekonnen and Vizcáıno [2022] have studied comparative statics of agents’ optimal

distributions of actions in Bayesian games when the informativeness of their signals increases.

To the best of our knowledge, ours is the first paper to perform comparative statics in the

context of optimal security design.

2 The Model

2.1 Security Design

The economy consists of an issuer (she) and a liquidity supplier (he). The issuer owns a risky

asset that delivers a stochastic cashflow y ∈ R+. There are two periods, t ∈ {1, 2}. In period

1, the issuer can sell a claim s(·) on the asset’s period 2-cashflows to the liquidity supplier at

a price p. In period 2, the asset delivers the stochastic cashflow y ∈ R+, and the liquidity

supplier obtains s (y).

Securities. The issuer has the flexibility to design any arbitrary financial security satis-

fying limited liability and double-monotonicity in the asset’s cashflows.12 Therefore, the set

12These are standard assumptions in the security design literature (see, e.g., Nachman and Noe [1994]).
When s(y) is not monotone, the issuer can request (risk free) credit to a third party to boost cashflows and
thus decrease the amount owed to liquidity supplier. In turn, when y − s (y) is not monotone, the issuer can
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of available securities is given by:

S ≡ {s : R+ → R+ s.t: (LL) : 0 ≤ s(y) ≤ y, ∀y ≥ 0

(M) : s(y) and y − s (y) are nondecreasing}.

Information. In period 1, the liquidity supplier observes his type, ω ∈ {ωn}Nn=1, which

is private information. We denote by F (ω, y) the joint distribution of ω and y, and by

Φ the marginal distribution of ω; for notational ease, we let Φn ≡ P {ω ≤ ωn} and ϕn ≡
P {ω = ωn}. The conditional distribution of cashflows is ordered according to MLRP. That

is, F (y|ω = ωi) ≻MLRP F (y|ω = ωj) for all i, j ∈ {1, ..., N} with i > j.13 We further assume

that E {y|ωN} < ∞. The issuer does not observe any information before trading with the

liquidity supplier. Her prior beliefs about cashflows y are given by Ψ ≡ margyF .

Preferences. The liquidity supplier is risk-neutral. The valuation, in monetary terms,

of a future cashflow y, for liquidity supplier ωn is given by

u (y, ωn) ≡ φ (ωn) y + ν (ωn) .

where φ (ωi) , ν (ωi) are both nonnegative and nondecreasing. The case where φ (ω) = 1 and

ν (ω) = 0 for all ω implies that heterogeneity only arises from different degrees of optimism

about future cashflows (i.e., belief heterogeneity). The case where φ or ν are not constant

corresponds to the case wherein higher types have a more productive technology that yields

larger returns (i.e., payoff heterogeneity).

The expected utility of liquidity supplier ωn from buying security s(·) at price p is then

given by the following:

En {un(s)} − p =

∫
R+

un(s(y))dFn(y)− p

=

∫
R+

(φns (y) + νn)dFn(y)− p

where we write un (s) = u (s, ωn), φn = φ (ωn), νn = ν (ωn), Fn (y) = F (y|ωn), and En {·} =

E {·|ωn} for brevity. Henceforth, the absence of a subindex indicates the issuer’s beliefs who,

as explained above, does not observe additional information.

The issuer, on the other hand, is liquidity-constrained and discounts future cashflows with

burn cashflows and improve her payoff.
13This is equivalent to the conditional probability density function f (y|ω) satisfying log-supermodularity.
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a factor δ ∈ [0, 1). For any contract specifying security s and price p, her payoff is given by

v (y, s, p) ≡ p+ δ (y − s (y)) .

Assumption 1. We assume that for any s ∈ S, φNEN {s (y)} > δE {s (y)}.
Assumption 1 says that the highest type always values the securities offered by the issuer

more than the latter. Intuitively, this assumption guarantees that the game admits positive

gains from trade. In environments with pure belief heterogeneity, the assumption is trivially

satisfied for example if the beliefs of the highest type dominate those of the issuer in the FOSD

sense. In turn, in environments with pure payoff heterogeneity, the assumption requires that

φN > δ.

Mechanisms. Without loss of generality, we restrict attention to incentive-compatible,

direct mechanisms. The issuer asks the liquidity supplier to report his type and offers and

allocation and price given by M = {sn (y) , pn}Nn=1, where sn and pn represent the security

and the price offered to a liquidity supplier reporting ωn, respectively. The issuer has all the

bargaining power and designs M.

Let UM (ωi;ωj) represent the expected utility of a liquidity supplier whose true type is ωj

and reports ωi under mechanism M:

UM (ωi;ωj) ≡
∫ ∞

0

uj (si(y)) dFj(y)− pi

= Ej {uj (si(y))} − pi, ∀i, j ∈ {1, ..., N} .

Definition 1. We say that a mechanism M is feasible if it satisfies (i) individual rationality

[IRn] : UM (ωn;ωn) ≥ 0, ∀n ∈ {1, ..., N} ,

and (ii) incentive compatibility

[ICi,j] : UM (ωi;ωi) ≥ UM (ωj;ωi) , ∀i, j ∈ {1, ..., N} .

The issuer designs a mechanism M = {s⋆n, p⋆n}
N
n=1 that solves the following program

max
{sn,pn}Nn=1

E {v (y, s [ω] , p (ω))} =
N∑

n=1

ϕn

(
pn + δ

∫ ∞

0

(y − sn(y)) dFn(y)

)
s.t. [IRi], [ICi,j], i, j ∈ {1, ..., N} . (1)
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3 The Optimality of Debt Menus

In this section, we show that the optimal feasible mechanism consists of a debt menu. To prove

this result, we first establish some basic properties that are instrumental to our analysis. We

first prove that, regardless of the value of δ ∈ [0, 1) , all types ω > ω1 enjoy strictly positive

information rents thereby precluding the possibility full surplus-extraction mechanisms. We

further show that, consistent with the standard screening problem, it is without loss of opti-

mality to restrict attention to mechanisms that leave no information rents to the lowest type

(no rents at the bottom) and that do not distort the efficient allocation of the highest type

(no distortion at the top).

Proposition 1. For any feasible mechanism M = {sn (·) , pn}Nn=1, the following properties

are true:

1. For any i, j ∈ {1, ..., N} with i < j, UM (ωj;ωj) > UM (ωi;ωi) ≥ 0.

2. If [IR1] does not bind, then M is strictly dominated.

3. Suppose that assumption (1) holds. If sN (y) ̸= y for all y ∈ R+, then M is strictly

dominated.

Property 1 in Proposition 1 says that in any feasible mechanism, all liquidity supplier

types ω > ω1 earn positive information rents. This result contrasts with the famous results

by Crémer et al. [1987] and Crémer and McLean [1988] showing that when the issuer’s and

liquidity supplier’s information signals are correlated, the issuer can capture all the surplus.

In our case, y and ω are correlated; yet the structure of the problem prevents the issuer

from appropriating the whole surplus. The results follows from the assumptions that (a)

the issuer is liquidity-constrained and (b) sells financial securities s ∈ S. The assumption

that the issuer need to raise cash in period 1 implies that the price p paid by the liquidity

supplier cannot be made contingent on the future realizations of the asset’s cashflows. In

turn, the assumption that issuer sells financial securities (s ∈ S) implies that they must

exhibit cashflow monotonicity. This requirement imposes a constraint which precludes the

design of the lotteries required for full-extraction. (Crémer and McLean [1988]).14

Interestingly, either (strict) belief or payoff heterogeneity on their own are enough to imply

the results above. That is, even if the type ω is noninformative about cashflows or irrelevant

14Even if we dispense with the monotonicity assumption, the requirement that the securities must also
satisfy limited liability would generally preclude full-extraction mechanisms (Crémer & Mclean [1985]) that
typically require deep pockets.
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for the liquidity supplier’s preferences over cashflows, there will be positive information rents

for all but the lowest type.

Properties 2 and 3 are standard. Property 2 follows from the fact that the lowest type, ω1,

obtains the lowest information rents (property 1). If this type obtains positive rents under

a given mechanism, the issuer can increase all prices {pn}n by the same amount until [IR1]

binds. Finally, property 3 obtains from the fact that the highest type, ωN , values the asset

more than the rest of the types and, by assumption (1), also more than the issuer. The issuer

can therefore sell the whole asset to type ωN and charge a price that only the type is willing

to offer. Hence, it is optimal not to distort the allocation designed for the highest type.

3.1 Relaxing Incentive Constraints with Debt

The next property plays a special role for the subsequent results.

Definition 2. [Single crossing from below/above] We say that a function h : R+ → R
satisfies the property single crossing from below (SCFB) if there exists y0 ∈ R++ so that

h (y) ≤ 0 for any y < y0 and h (y) ≥ 0 for any y ≥ y0. We say that h satisfies strict single cross-

ing from below (SSCFB) if, in addition, the sets {y ∈ R+ : h (y) < 0} and {y ∈ R+ : h (y) > 0}
have a positive (Lebesgue) measure. Similarly, we say that h satisfies single crossing from

above (SCFA) or strict single crossing from above (SSCFA) if −h satisfies SCFB or SSCFB,

respectively.

Lemma 1. Suppose that (y,ω) satisfy the MLRP and that h satisfies the SCFB. If, for some

ω′ ∈ Ω,
∫∞
0
h (y) dF (y|ω′) ≥ 0, then necessarily,∫ ∞

0

h (y) dF (y|ω′′) ≥ 0, ∀ω′′ > ω′.

If h satisfies SSCFB, then the second inequality is strict.

We now show that downward incentive constraints are maximally relaxed by assigning

a debt security to the lowest type. Intuitively, among all securities that provide the same

expected payoff (according to the beliefs of a specific liquidity supplier type), debt is the least

preferred by higher types as it minimizes the payments for high realizations of y (i.e., the

upside). Stated differently, debt securities minimize the information rents captured by high

types.

Lemma 2. Consider an arbitrary mechanism M = {sn, pn}Nn=1. Suppose that there exists

i ∈ {1, ..., N} such that [ICj,i] holds for all j > i. Then, the mechanism M̂ = {ŝn, p̂n}Nn=1 with
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(ŝn, p̂n) = (sn, pn) for all n ̸= i, and (ŝi(y), p̂i) = (min {y,Di} , pi), with Di defined such that

Ei (min {y, Di} − si) = 0, satisfies [ICj,i] for all j > i. Moreover, whenever si ̸= ŝi, [ICj,i] is

slack for all j > i.

Proof. Consider the mechanism M̂ = {ŝn, p̂n}Nn=1 described above. We show that the new

mechanism relaxes incentive compatibility constraints. In fact, for any j > i, type ωj’s payoff

from mimicking type ωi decreases under M̂. To see this more clearly, observe that si − ŝi

satisfies SCFB in y. This fact, coupled with the log-supermodularity of f(y|ω) implies that

the conditions in lemma 1 apply. Hence,

Ei {si − ŝi} = 0 ⇒ Ej {si − ŝi} ≥ 0,

with strict inequality whenever si is not debt (i.e., si ̸= ŝi over a set with F -positive measure).

This, in turn, implies that, for any j > i, type ωj weakly prefers contract si over ŝi as

Ej {uj (si)} > Ej {uj (ŝi)}. Thus, the incentive compatibility constraints [ICj,i] are relaxed for

all j > i under M̂.

Lemma 2 establishes that downward incentive constraints can be relaxed by allocating

debt securities to low types. This does not necessarily imply that debt securities must be

part of the optimal mechanism, as upward incentive constraints might be compromised by

changing the securities for debt. In fact, as the steps leading to the proof of lemma 2 suggest,

among all the securities si that provide type ωi the same expected payoff Ei (si), the debt

security ŝi(y) = min {y,Di} is the one that provides maximal incentives to mimic for types

h < i. The next section shows that despite this potential conflict, the issuer optimally sells

debt securities to all types.

We note that for the lowest type, ω1, for which there is no upward incentive constraints,

lemma 2 directly implies that the optimal security must be debt.

Corollary 1. Any feasible mechanism M = {sn, pn}Nn=1 for which there does not exist D > 0

such that s1 = min {y,D} for (F -almost all) y (i.e., s1 is not a debt security), is strictly

dominated by another feasible mechanism M̂ = {ŝn, p̂n}Nn=1 with ŝ1(y) = min {y,D1} for

some D1 > 0.

3.2 Oriented Mechanisms

Before characterizing the optimal mechanism we identify a class of mechanisms that plays a

special role in our environment.

14



Definition 3. We say that a feasible mechanism M = {si, pi}Ni=1 is oriented if, for any

j, k ∈ {1, ..., N}, with k > j, Ek {sk − sj} ≥ 0.

In words, a mechanism is oriented if any liquidity supplier type ωk prefers his security to

the ones tailored to lower types ωj, with k > j. The concept of orientation is related to the

monotonicity condition in the screening literature, but it neither implies nor is implied by the

monotonicity of the allocation in the liquidity supplier’s type.15 Moreover, we show below

that orientation does not follow from incentive compatibility (as in the single-dimensional

case) but instead requires an optimality argument.

We argue below that we can restrict attention to the class of mechanisms satisfying orien-

tation without loss of optimality.

3.3 Strong Liquidity Constraints

We consider first the case where δ = 0 . This captures the case where the issuer faces severe

liquidity constraints and fully discounts the asset’s future cashflows. The assumption allows

us to highlight the main economic forces at play while maintaining tractability. We postpone

the case δ ∈ (0, 1) to the next (sub)section and show that under mild conditions, the same

results below still hold for the general case.

We use a replication argument to demonstrate that it is without loss of optimality to

restrict attention to oriented mechanisms. To see this more clearly, consider an arbitrary

feasible mechanism, M = {sn, pn}Nn=1, for which there exist j, k with k > j, Ek {sk − sj} < 0.

Then, we must have pj > pk since otherwise the incentive constraint [ICk,j] would be violated.

This, in turn, means that there exists an alternative mechanism, M̂, which is identical to

M except for the fact that it offers contract (ŝk, p̂k) = (sj, pj) to type ωk. In other words,

M̂ deletes the contract offered to type ωk under mechanism M and replaces it with the

contract offered to type ωj. Note that Ek {sk − sj} < 0, together with the assumption that

F (y|ωk) ≻MLRP F (y|ωj) and the monotonicity of u (x, ·) in ω, jointly imply that

UM̂ (ωk;ωk) = Ek {uk (sj)} − pj > Ej {uj (sj)} − pj ≥ 0.

Therefore, the new mechanism satisfies [IRk]. Furthermore, all other incentive constraints

remain uncompromised under the new mechanism as the contract (sj, pj) was already available

under M. The new mechanism M̂ thus strictly raises more funds than M. When δ = 0, the

15When the allocation space is single-dimensional (e.g., the probability of selling the good), this property
is equivalent to the standard monotonicity condition, implied by incentive constraints. The corresponding
analog in the infinite-dimensional case can be appreciated in inequality (25) in the Appendix.
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issuer is maximally impatient and strictly prefers the mechanism M̂ over M as it raises more

funds. We note that in contrast to the standard argument where incentive compatibility

alone implies monotonicity, in the current environment, orientation is a consequence of both

incentive compatibility and optimality.

Lemma 3. [Oriented Mechanisms] Any feasible mechanism M = {sn, pn}Nn=1 that is not

oriented is strictly dominated by another feasible, oriented mechanism.

Equipped with the last result, we are now ready to present the main result of this subsec-

tion.

Theorem 1. There exists a unique optimal mechanism, M⋆ = {s⋆n, p⋆n}
N
n=1, satisfying the

following properties. For any n ≤ N − 1, there exists Dn > 0 so that s⋆n (y) = min {y,Dn}
and s⋆N (y) = y, for all y.

We provide a sketch of the proof below, which is divided into 3 steps.

In Step 1, we show that for any oriented mechanism, when security si is debt, then for

any pair of types above i, k > j > i, the downward incentive constraints [ICk,j] and [ICj,i]

imply the global downward constraint [ICk,i]. The global downward incentive constraints are

therefore redundant.

The intuition behind Step 1 is as follows. When si is a debt contract, then for any j, k

with k > j > i, if type ωj prefers his security sj over si, then type ωk must also prefer sj over

si. The standard argument used in the screening literature follows from the monotonicity of

the allocation rule (which is implied by incentive compatibility) and the supermodularity of

the liquidity supplier’s payoff in both his type and the allocation. In the current setting, it is

not clear what the correct notion should be of the supermodularity of the liquidity supplier’s

payoff in his type and the security, an infinite-dimensional object. Instead, we leverage the fact

that when si is a debt contract, si crosses other securities from above. Lemma 1 then implies

that for any sj with Ej {sj − si} ≥ (>) 0 (which is always true for oriented mechanisms), it

must be the case that Ek {sj − si} ≥ (>) 0. This in turn means that if type ωj, according to

his beliefs, does not mimic type ωi, then neither does type ωk.

In Step 2, we use the result obtained in Step 1 to show that when si is debt, then the local

downward incentive constraint [ICi+1,i] must bind. The argument is obtained by contradiction.

Suppose that for some i ∈ {1, ..., N − 1}, [ICi+1,i] is satisfied with slackness; then the argument

in Step 1 implies that for any k ≥ i+ 1, the incentive constraints [ICk,i] are slack. The issuer

can therefore increase the transfers pk for all types k ≥ i + 1 without spoiling incentive

compatibility. We conclude that at any undominated mechanism, constraint [ICi+1,i] must

bind.
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Finally, in Step 3, we show that for any oriented mechanism M, if we let i+1 ≤ N be the

smallest type for whom his security si+1 is not debt, we can improve upon the issuer’s payoff

by swapping security si+1 for the payoff-equivalent debt contract sDi+1 (according to ωi+1’s

beliefs), without spoiling the upward incentive constraints, [ICh,i+1], for h ≤ i. Here we sketch

the argument for the case h = i. Let sDi+1 be a debt security with Ei+1

{
sDi+1 − si+1

}
= 0,

the issuer can relax the downward incentive constraints without spoiling the upward incentive

constraints. Indeed, we observe that

pi+1 − pi = Ei+1 {ui+1 (si+1)− ui+1 (si)}

= Ei+1

{
ui+1

(
sDi+1

)
− ui+1 (si)

}
≥ Ei

{
ui+1

(
sDi+1

)
− ui+1 (si)

}
, (2)

where the first equality follows from the result in Step 2, and the second equality is obtained

by the construction of sDi+1. The inequality, in turn, follows from noting that the mechanism

M is oriented and therefore

Ei+1

{
sDi+1

}
= Ei+1 {si+1} ≥ Ei+1 {si = min {y, Di}} .

This means that sDi+1 − si is nondecreasing, which, coupled with the MLRP assumption and

the monotonicity of u (s, ω) in ω, implies the result.

Inequality (2) implies that type ωi does not mimic type ωi+1 when the latter’s security is

replaced by its payoff-equivalent debt security; hence, the upward incentive constraint [ICi,i+1]

is satisfied. We show in the Appendix that a similar argument can be made to show that for

any h < i, [ICh,i+1] is also satisfied in the new mechanism.

Theorem 1 shows that to maximize the funds raised from an informed investor, restricting

attention to debt menus does not result in loss of optimality. This characterization, together

with the result in Lemma 3, jointly imply that the face values associated with the optimal

debt securities must be monotone in the liquidity supplier’s type. Lemma 4 below crystallizes

this point and shows that the issuer’s optimal mechanism is the debt menu that maximizes

her virtual valuation across all debt menus with monotone face values. Our characterization

thus implies that, similar to the classical screening problem (e.g., Mussa and Rosen [1978]),

the allocation space is reduced to a single-dimensional variable, namely, the face value of the

debt securities and a simple monotonicity restriction.

Interestingly, theorem 1 further implies that exploiting the possibility of introducing secu-

rities with different degrees of information sensitivity in the menu is ineffective at screening
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the liquidity supplier’s private information. In subsection 3.5, we substantiate this claim by

formalizing the intuition that the liquidity supplier’s information rents are monotone in the

securities’ information sensitivity.

3.3.1 Characterization of the Optimal Mechanism

Equipped with the result in theorem 1, we proceed to characterize the optimal mechanism

with securities. The previous results imply that we can restrict attention to menus of debt

securities, that is, mechanisms satisfying that, for any n, sn = min {y,Dn} for all y, where

Dn > 0 and is increasing in n, and DN = +∞. Moreover, Step 2 in the proof theorem 1

implies that, without loss, we can restrict attention to mechanisms satisfying that, for any

j > 1, [ICj,j−1] binds and, because of proposition 1, further satisfying p1 = E {min {y, D1}}.
Together, these properties imply the following characterization.

Lemma 4. The issuer’s problem can be reformulated as

max
{Dn}Nn=1

N∑
n=1

ϕn

∫ ∞

0

un (min {y,Dn})
(
1−

(
1− Φn

ϕn

)(
fn+1 (y)− fn (y)

fn (y)

))
dFn (y) (3)

s.t. Dn nondecreasing in n.

3.4 General Case

We now consider the general case where δ ∈ [0, 1). The results below readily extend to the

case where Ω is continuous (i.e., Ω = [ω, ω̄] ⊆ R+). We maintain the notation of the discrete

case below for comparability with the former section. In the Appendix we provide a general

statement and proof to encompass the continuum case. To simplify the exposition, we focus

hereafter on the case of pure heterogeneity in beliefs. That is, un (s) = s for all n (i.e.,

φn = 1, νn = 0). We make two standard assumptions.

Assumption 2. The inverse hazard rate 1−Φ(ω)
ϕ(ω)

is nonincreasing in ω.

Assumption 3. The conditional distribution function F (y|ω) is convex in ω.

Assumption 2 is standard in the mechanism design literature (see, e.g., Myerson [1981]).

Intuitively, this assumption curbs the information rents that need to be forgone to higher

types. Assumption 3, on the other hand, requires the differential

∆n (y) ≡ 1− Fn+1 (y)− (1− Fn (y))
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to decrease as n increases. This effect is reminiscent to the requirement that the marginal

value of increasing the buyer’s allocation to be concave in his type (see, e.g., Fudenberg and

Tirole [1991]). When the issuer restricts herself to sell debt securities to all types (which, as

we prove below, is a fortiori optimal), the allocation designed for type ωn is determined by

the face value of his debt security, Dn. The marginal value of increasing type ωn’s allocation

is therefore given by

∂

∂Dn

∫
R+

min {y,Dn} dF (y|ωn) =
∂

∂Dn

(∫ Dn

0

ydFn (y) +Dn (1− Fn (Dn))

)
= 1− Fn (Dn) .

Thus, assumption 3 implies that the marginal value of increasing the liquidity supplier’s

allocation is concave in ωn. Our next result shows that under these two assumptions, the

issuer’s optimal mechanism consists of a debt menu. Furthermore, the optimal menu does not

feature pooling.

Theorem 2. Suppose that assumptions (1), (2), and (3) hold. Then, the optimal mechanism

M⋆ = {s⋆n, p⋆n}
N
n=1 consists of a debt menu. For every n ∈ {1, ..., N}, s⋆n = min {y,D⋆

n}, where
D⋆

n is strictly monotone in n and is implicitly characterized by the unique solution to16∫ ∞

Dn

(
1− δ −

(
1− Φn

ϕn

)(
fn+1 (y)− fn (y)

fn (y)

))
dFn(y) = 0. (5)

We provide a sketch the proof. Consider the relaxation of the issuer’s problem (program

1) where only the local incentive constraints are required. That is, the issuer solves

max
{sn,pn}Nn=1

N∑
n=1

ϕn

(
pn + δ

∫ ∞

0

(y − sn(y)) dFn(y)

)
s.t. [IRi], [ICi,j], i ∈ {1, ..., N} , j ∈ {i− 1, i+ 1} . (6)

Denote by M̂ = {ŝn, p̂n}Nn=1 the solution to the program above. Clearly, the issuer’s payoff

under M̂ is weakly higher than under the mechanism M⋆ that solves program (1) as the set

of constraints is a strict subset of the latter. First, we argue that in the relaxed problem,

16When Ω is continuous, we further require that E
{
y

∂f(y|ω)
∂ω

f(y|ω) |ω
}

< ∞. In that case, D⋆(ω) is implicitly

characterized by ∫ ∞

D⋆(ω)

{
1− δ − 1− Φ(ω)

ϕ(ω)

∂
∂ωf (y|ω)
f (y|ω)

}
dF (y|ω) = 0. (4)
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local-downward incentive constraints must bind. Otherwise, if some constraint [ICi+i,i] does

not bind, the issuer can raise the prices to all types above ωi and still satisfy the feasibility

constraints. We can therefore rewrite the issuer’s payoff as

N∑
n=1

ϕn

∫ ∞

0

sn (y)

(
1− δ −

(
1− Φn

ϕn

)(
fn+1 (y)− fn (y)

fn (y)

))
dFn (y) .

We argue in the Appendix that the expression above is pointwise maximized by choosing, for

each n ∈ {1, ..., N}, a debt security with face value D⋆
n, as defined in (5). Under assumptions

(2) and (3), the sequence {D⋆
n}

N
n=1 is monotone. This implies that the set of debt securities

{ŝn = min {y,D⋆
n}}

N
n=1 is oriented. The orientation of {ŝn}Nn=1 in turn implies that we can use

the same arguments establishing Step 1 in the proof of Theorem 1 to show that any oriented

mechanism respecting local, downward incentive constraints is globally incentive compatible

(i.e., the incentive constraints [ICi,j], i ∈ {1, ..., N}, |j − i| > 1 are also satisfied). Thus,

the solution to the relaxed program M̂ is also feasible at the original program (1) and must

therefore be optimal.

3.5 Information Sensitivity and Information Rents

Definition 4. We sat that security s′′ ∈ S is more information sensitive than s′ ∈ S, if s′′−s′

has the SSCFB property.

Intuitively, more information sensitive securities increase the exposure of the security owner

to the asset’s cashflow realizations. That s′′− s′ has the SSCFB property implies that for low

cash flow realizations s′′ (y) < s′ (y) the security owner has a smaller payoff under s′′ than

under s′, whereas the opposite holds true, for high cashflow realizations.

We argue that the liquidity supplier’s information rents are closely related to the securities’

information sensitivity. Indeed, the steps leading to the result in Theorem 4, imply that, for

any feasible menu of securities {s [ω]}ω∈Ω, the issuer’s objective can be expressed as

∫
Ω

(1− δ)E {s (y|ω) |ω}︸ ︷︷ ︸
Gains from trade

−
(
1− Φ (ω)

ϕ (ω)

)
E

{
s (y|ω)

(
∂
∂ω
f(y|ω)
f(y|ω)

)
|ω

}
︸ ︷︷ ︸

Informational Rents

 dΦ (ω) .
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For any ω ∈ Ω, and any feasible mechanism M = {s [ω] , p (ω)}ω∈Ω, let

IM (ω) ≡
(
1− Φ (ω)

ϕ (ω)

)
E

{
s (y|ω)

(
∂
∂ω
f(y|ω)
f(y|ω)

)
|ω = ω

}

represent type ω’s information rents under mechanism M. This expression represents the

amount of rents that need to be paid to every type above ω to not pretend to be type ω.

When the liquidity supplier’s type is commonly known, the issuer maximizes the expected

value of the security sold to the liquidity supplier. In that case, the issuer optimally sells

the whole asset to the liquidity supplier, who is the efficient holder of the asset, and extracts

all rents from him. Instead, when the liquidity supplier has private information, the issuer

needs to leave information rents to the liquidity supplier, which entails distorting allocative

efficiency. As theorem 1 dictates, the issuer is better off by holding on to the high realizations

of the asset’s cashflows despite the fact that she assigns a smaller value to them. Doing so

allows her to minimize the information rents she leaves to the highest types.

To elaborate further, consider the standard screening problem, wherein a buyer purchases

an asset from an issuer constrained to sell pure equity (i.e., the whole asset). In that en-

vironment, it is without loss to restrict attention to direct mechanisms specifying, for each

type ω, the probability of trading, α (ω) ∈ [0, 1], and the transfers p (ω) ≥ 0. That en-

vironment is equivalent to an issuer restricted to selling equity stakes (e.g., stocks), i.e.,{
sE (y|ω) = α (ω) · y

}
ω∈Ω, at prices {p (ω)}ω∈Ω.

17

Selling information sensitive securities (such as these equity stakes), however, leaves large

information rents to the liquidity supplier. The issuer can minimize these rents by reducing the

information sensitivity of the securities in her menu. Indeed, consider any feasible mechanism

ME =
{
sE [ω] , pE (ω)

}
ω∈Ω, with sE (y|ω) = α (ω) · y, for all ω. Construct an alternative

mechanism with information-insensitive securities, MII =
{
sII [ω] , pII (ω)

}
ω∈Ω, where for

each ω, E
{
sII (y|ω) |ω

}
= E

{
sE (y|ω) |ω

}
, and sII [ω] is less information sensitive than

sE [ω]; that is, sII [ω]− sE [ω] is SSCFA. Then,

IM
II

(ω)− IM
E

(ω) =

(
1− Φ (ω)

ϕ (ω)

)∫ ∞

0

(
sII (y|ω)− sE (y|ω)

) ∂

∂ω
f(y|ω)dy

=

(
1− Φ (ω)

ϕ (ω)

)∫ ∞

0

(
sII (y|ω)− sE (y|ω)

)
lim
δ↓0

(
f(y|ω + δ)− f(y|ω)

δ

)
dy

< 0, ∀ω ∈ Ω

17The proof of Example 1 contains the derivation of the optimal mechanism restricted to this class of
securities.
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where the inequality follows from the construction of
{
sII [ω]

}
ω∈Ω and the inequality is a

direct implication of Lemma 1 which jointly imply that, for any δ > 0,∫ ∞

0

(
sII (y|ω)− sE (y|ω)

)(f(y|ω + δ)− f(y|ω)
δ

)
dy =

∫ ∞

0

(
sII (y|ω)− sE (y|ω)

) f(y|ω + δ)

δ
dy

< 0.

We conclude that, regardless of the liquidity supplier’s private signal, information rents are

strictly smaller when the issuer offers more informational-insensitive securities. The fact that

these latter securities are constructed keeping the liquidity supplier’s valuation unchanged,

then implies that the issuer strictly benefits form her ability to design securities which are

less sensitive to the liquidity supplier’s information. This prediction stands in sharp contrast

with the typical finding in the security design literature according to which, when trading,

the informed agent obtains information-sensitive securities.18

4 Information and Monotone Comparative Statics

Motivated by the important role of the liquidity supplier’s private information in determin-

ing the optimal mechanism, we explore how changes in the quality of the liquidity supplier’s

private signal affects the issuer’s optimal mechanism and her ability to raise funds. In prac-

tice, the quality of the liquidity supplier’s information is influenced by different channels. It

may vary, for example, because of the introduction of new regulation. In the context of asset

backed securities (ABS), under Regulation AB, the SEC imposes disclosure requirements for

asset-backed securities offerings. 19 The information provided by the issuer then allows the

liquidity provider to assess the value of the security according to his idiosyncratic preferences

and beliefs. The quality of the liquidity supplier’s information might also evolve with tech-

nological changes to the market participants’ data processing tools, and through the liquidity

supplier’s due diligence efforts. We remain agnostic about the determinants of the underly-

ing information structure and, instead, explore how changes to the quality of the investors’

information affect the issuer’s funding capacity.

To simplify the derivations, we focus henceforth on the case with a continuum of types

mentioned above and formally derived in Theorem 4 in the Appendix. We show below that

as the liquidity supplier’s private signal becomes more accurate (Lehmann [1988]), the issuer

optimally offers debt instruments with smaller face values. Perhaps surprisingly, however, the

18See, e.g., Gorton and Pennacchi [1990], Nachman and Noe [1994], DeMarzo and Duffie [1999], Biais and
Mariotti [2005].

19Please refer to https://www.sec.gov/corpfin/divisionscorpfinguidanceregulation-ab-interpshtm.
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geometry of the optimal securities, i.e., the concavity of debt on the asset’s future cashflows,

implies that improving the accuracy of the liquidity supplier’s information increases his valu-

ation for these securities. This effect is similar to a reduction in uncertainty for a risk-averse

agent, which increases his utility. The overall effect on both surplus and the agents’ payoffs

is thus ambiguous.

Below, we provide an example that showcases the novel effect described above and chal-

lenges some economic intuitions from the classical screening problem.

Example 1. Consider the case with δ = 0 (strong liquidity constraints). Suppose that

ω ∼ U [0, 1] and that for θ ∈ [1/3, 1], yθ is constructed as follows. With probability θ,

yθ = ω, whereas with probability 1− θ, yθ ∼ U [0, 1], independent of ω. That is,

F θ (y|ω) = Pr
{
yθ ≤ y|ω = ω

}
= θ · 1 {ω ≤ y}+ (1− θ) y.

The following properties are true:

(a) For any θ′′, θ′ ∈ (0, 1), θ′′ > θ′, F θ′′ is more accurate (Lehmann [1988]) than F θ′ .20

(b) Suppose the issuer is restricted to use linear securities, i.e., for all ω ∈ [0, 1],

s [ω] ∈ SE ≡ {s ∈ S : ∃α > 0, s (y) = αy, ∀y ∈ [0, 1]} .

Then, the (restricted) optimal mechanism is characterized by

αE
θ (ω) = 1

{
ω ≥ ωE

θ ≡ 3θ − 1

4θ

}
.

Furthermore, under this mechanism E
{
pEθ (ω)

}
= (1+θ)2

16θ
.

(c) The issuer’s (unrestricted) optimal mechanism is a debt menu {min {y,D∗
θ (ω)}}ω∈[0,1]

with face values characterized by

D∗
θ (ω) = ω, ∀ω ∈ [0, 1] ,∀θ ∈ (0, 1) .

Under this mechanism, information rents are 0 for all ω ∈ [0, 1]; Furthermore, E {p∗θ (ω)} =

E {E {min (y,ω) |ω}} = 2+θ
6
.

Example 1 underscores some fundamental differences with the case where the issuer is

constrained to use linear instruments, a typical assumption in the screening literature. Under

the restriction, the optimal mechanism consists of a posted price. The issuer sells the whole

20The formal definition is provided in the next subsection.
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asset to all liquidity supplier types above the critical type ωE
θ at price E

{
y|ωE

θ

}
, leaving

strictly positive information rents to all types strictly above the critical type. Furthermore,

as the accuracy of the liquidity supplier’s private information increases, the issuer increases

the posted price destroying both surplus and the expected proceeds from the security sale

(indeed, E
{
pEθ (ω)

}
decreases with θ).

In contrast, when the issuer can flexibly design the security, she optimally sells debt in-

struments to all liquidity supplier types. Interestingly, as we prove in the Appendix, under

the optimal mechanism, the issuer leaves no information rents.21 Using a debt menu allows

the issuer to alleviate incentive compatibility issues and extract all the surplus generated by

these securities. Strikingly, as the liquidity supplier’s private information becomes more accu-

rate, the issuer increases expected proceeds from the sale. As we formally prove below, this

counterintuitive result is a direct consequence of the geometry of the optimal securities. The

concavity of debt implies that the liquidity suppliers valuation for these securities increases

when she is faced with a reduction in uncertainty.

The example above is special in some dimensions. First, the optimal mechanism is invariant

in θ. As we prove below in Theorem 3, the set of optimal face values is nonincreasing in the

accuracy of the liquidity supplier’s private signal. This provides a countervailing effect that

reduces the issuer’s expected revenue. Second, in the example, the issuer is able to extract all

the rents with debt securities. This property need not extend to more general environments.

We show that the information rents have the single crossing property in the accuracy of the

liquidity supplier’s signal. This provides another countervailing effect that reduces the issuer’s

revenue. In Example 1, neither of the two effects are present, which leads to the surprising

result that the issuer benefits and raises more funds when she faces a more informed liquidity

supplier.

4.1 Information Accuracy [Lehmann [1988]]

Suppose that conditional on the liquidity supplier drawing a private type ω = ω, the distri-

bution of the asset’s future cashflows y is drawn according to the kernel function F (y|ω) =
Pr {y ≤ y|ω = ω}. Following the tradition in the information literature, we refer to F (y|ω)
as an experiment. The experiment F and the prior distribution of ω, Φ, uniquely determine

the joint distribution

FΦ (y, ω) ≡
∫
Ω×R+

F (y|ω̃) 1 {ω̃ ≤ ω}Φ (dω̃) .

21This result contradicts property 1 in Proposition 1. The assumption that the example violates is the
requirement on F θ to not have atoms in y.
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Throughout the analysis, we maintain the assumption that the distribution of FΦ (y, ω)

admits a density fΦ (y, ω), which satisfies MLRP. We refer to the induced marginal distribution

of the asset’s cashflows as Ψ (F,Φ) = margyFΦ ∈ ∆R+.

Below, we formally introduce a natural ordering to rank the amount of information em-

bedded in the liquidity supplier’s private type, ω, about the asset cashflows, y.

Definition 5. [Lehmann [1988]] Consider two random variables y′′ and y′ representing the

asset’s future cashflows, and let F ′′ (y|ω) and F ′ (y|ω) be the experiments associated with

them, respectively. We say that F ′′ is more accurate about ω than F ′, which we write as

F ′′ ⪰Lehmann F
′ if for any y,22

F ′′−1 (F ′ (y|ω) |ω) is nondecreasing in ω.

Accuracy has been used in the information economics literature to perform monotone

comparative statics in the context of auctions (Persico [2000] and Ganuza and Penalva [2010]),

moral hazard (Kim [1995], Jewitt [2007]), and career concerns (Dewatripont et al. [1999]).

4.2 Accuracy, Supermodularity, and Informativeness

We argue that accuracy (Lehmann [1988]) is an appealing notion of informativeness in our

environment for three reasons. First, provided that signals satisfy MLRP, accuracy is less

restrictive than the Blackwell ordering in that it compares more signal structures.23 Further-

more, as the next proposition shows, accuracy implies the standard notion of informativeness

usually assumed in the information design literature. Second, the concept of accuracy is

tightly related to the idea of interdependence. When an experiment is more accurate, the co-

movement between fundamentals and signals becomes stronger. Finally, the Lehmann order

compares experiments (i.e., conditional distributions) as opposed to comparing joint distribu-

tions. Intuitively, we want to change the quality of the liquidity supplier’s information without

changing the distribution of liquidity supplier types Φ or the distribution of the asset’s future

cashflows Ψ. This is natural since changing the marginal Φ changes the relative likelihood

of facing different liquidity supplier types, which directly changes the amount of information

22An alternative and perhaps more fundamental definition states that any decision-maker with a (Bernoulli)
utility function supermodular in the action and the underlying variable ω would prefer the information obtained
by learning y′′ over the information obtained from y′. See Jewitt [2007] and Quah and Strulovici [2009] for a
detailed discussion.

23Indeed, provided that signals satisfy the MLRP, any two signals ordered according to Blackwell are also
ordered according to Lehmann [1988]. When the state space is binary, both notions of informativeness coincide
(see, e.g., Jewitt [2007]). More recently, Kim [2022] showed that Lehmann domination is closely related to the
concept of quasigarbling, a generalization of information garbling.
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rents that must be provided to the different liquidity supplier types. In turn, changing the

marginal Ψ changes the quality of the underlying asset and hence the liquidity supplier’s val-

uation for the securities offered. In what follows, then, we fix a given marginal distribution,

Φ, and we study the effect of increasing the accuracy of experiment F , while keeping the

marginal distribution of cashflows Ψ (F,Φ) = margyFΦ unchanged. The results described in

our next proposition guarantee that as we increase the accuracy of the experiment F , we do

not change the primitives of the issuer’s problem beyond the effect induced via the accuracy

of the liquidity supplier’s information making the comparative statics exercise coherent.

Our next result summarizes the appeal of using accuracy as the appropriate ordering to

compare the informativeness of different signals structures.

Proposition 2. Consider an arbitrary marginal distribution Φ ∈ ∆Ω, and suppose that

F ′′ ⪰Lehmann F ′. Let F′′
Φ and F′

Φ be the induced joint distributions and assume that Ψ =

margyF
′′
Φ = margyF

′
Φ. Then,

(i) For any supermodular function v (ω, y),∫
R+×Ω

v (y, ω) dF′′
Φ (y, ω) ≥

∫
R+×Ω

v (y, ω) dF′
Φ (y, ω) .

In other words, F′′
Φ dominates F′

Φ in the supermodular order, F′′
Φ ⪰spm F′

Φ.

(ii) CovF′′
Φ
(ω,y) ≥ CovF′

Φ
(ω,y).

(iii) Let z′′ ≡ EF′′
Φ
(y|ω) and z′ ≡ EF′

Φ
(y|ω), and denote by H ′′ and H ′ the respective

cumulative distribution functions of z′′ and z′, respectively. Then, for any convex function

γ : R+ → R, ∫
γ (z) dH ′′ (z) ≥

∫
γ (z) dH ′ (z) .

In other words, z′′ dominates z′ in the convex order, EF′′
Φ
(y|ω) ⪰cvx EF′

Φ
(y|ω).

Proposition 2 shows the appeal of using accuracy to rank the informativeness of different

experiments. First, as an intermediate step, we recall that the Lehmann ordering, which

compares experiments, is tightly related to the supermodular order, which in turn compares

joint distributions. As explained by Meyer and Strulovici [2012], the fact that F′′
Φ ⪰spm F′

Φ

implies that the degree of interdependence of (y,ω) is larger under F′′
Φ than under F′

Φ. This

means that we can interpret increments in accuracy as changes in the joint distribution of

(y,ω), which increase their degree of correlation while keeping their marginal distributions

constant. Furthermore, as we show below, this property allows us to compare how the liquidity

supplier’s valuation for debt securities changes as we increase the accuracy of his private signal.
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Finally, Proposition 2 also shows that the concept of accuracy is closely related to the clas-

sical notion of informativeness in the information economics literature. Claim (iii) shows that

when F ′′ is more accurate than F ′, then the random variable capturing the posterior estimates

induced by learning the realization of ω under F ′′, EF′′
Φ
(y|ω) is a mean-preserving spread of

the analogous random variable capturing the posterior estimates under F ′, EF′
Φ
(y|ω). In

other words, when the accuracy of the experiment improves, the liquidity supplier’s private

information becomes more informative in the classical sense about the asset’s future cashflows.

4.3 Information and the Issuer’s Funding Capacity

In this section, we leverage the geometry of the optimal mechanism, i.e., the remarkable feature

that it consists of a menu of debt securities, to show that as the liquidity supplier’s private

information becomes more accurate, (i) the liquidity supplier’s valuation for any debt security

increases, and (ii) the issuer sells smaller securities, i.e., debt securities with smaller face

values. To the best of our knowledge, this is the first paper to perform monotone comparative

statics using information orderings in the context of security design.

Our first result formalizes the novel effect described above, according to which increasing

the accuracy of the experiment, F , implies that from the point of view of the liquidity supplier,

the distribution of cashflows becomes less risky. The concavity of debt on the asset’s future

cashflows then implies that, fixing a given security, s (y) = min {y,D}, more accurate infor-

mation improves the liquidity supplier’s valuation for that security and hence the gains from

trade. In other words, despite the risk neutrality of the liquidity supplier’s utility function,

the geometry of debt implies that increasing the accuracy of his private signal has an effect

similar to a reduction in uncertainty for a risk-averse agent.

Formally, we prove below that, fixing an arbitrary debt menu (with face values mono-

tonically ordered as implied by incentive compatibility), the gains from trade increase as the

liquidity supplier’s private signal becomes more accurate.

Proposition 3. Consider an arbitrary menu of debt contracts characterized by the set of

(monotone) face values {D (ω)}ω∈Ω. Suppose that F ′′ ⪰Lehmann F
′; then, EF′′

Φ
{min {y, D (ω)}} ≥

EF′
Φ
{min {y, D (ω)}}.

The result is a direct consequence of property (i) in Proposition 2, above. Note that, for

any nonnegative, nondecreasing function D (·), the function

ψ (y, ω) ≡ min {y,D (ω)}
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is supermodular in (y, ω). For any ω′′ > ω′, the monotonicity of D (·) implies that

ψ (y, ω′′)− ψ (y, ω′) = min {y,D (ω′′)} −min {y,D (ω′)}

is nondecreasing in y. The fact that accuracy implies the supermodular order (part (i) in

proposition (2)) implies that if F ′′ ⪰Lehmann F
′, then∫

R+×Ω

min {y,D (ω)} dF′′
Φ (y, ω) ≥

∫
R+×Ω

min {y,D (ω)} dF′
Φ (y, ω) .

Therefore, for any arbitrary debt menu with face values characterized by D (·), the liquidity

supplier’s ex ante valuation for the menu of securities increases as his information becomes

more accurate.

Proposition 3 assumes a fixed menu of debt securities. However, as the accuracy of the

liquidity supplier’s private signal becomes more accurate, the issuer optimally responds by

changing the face values of the debt securities. Our next result shows that the issuer’s optimal

menu monotonically decreases as we increase the accuracy of the liquidity supplier’s signal.

Theorem 3. Suppose Assumptions (1) and (2) hold. If F ′′ ⪰Lehmann F
′, then the respective op-

timal mechanisms under each experiment, characterized by the sets of face values {D′
∗ (ω)}ω∈Ω

and {D′′
∗ (ω)}ω∈Ω, satisfy D′

∗ (ω) ≥ D′′
∗ (ω), for all ω ∈ Ω.

The formal proof is in the Appendix. We provide the intuition for the result here. Fix a

marginal distribution Φ and an experiment F . Consider increasing the face value character-

izing the contract designed for type ω, D (ω), by ϵ > 0 small. The effect of such a variation

on the issuer’s revenue is approximately given by

ϵ
∂

∂D (ω)
E (p (ω) ;F ) = ϵϕ (ω) (1− F (D (ω) |ω))− ϵ (1− Φ (ω))

∂

∂ω
(1− F (D (ω) |ω)) . (7)

Indeed, with probability ϕ (ω), the issuer faces liquidity supplier ω and obtains the additional

revenue from increasing the contract D (ω) to D (ω) + ϵ and selling at the fair valuation

of type ω. The additional revenue is thus captured by ϵ · (1− F (D (ω) |ω)). In turn, to

prevent higher types ω̃ > ω from mimicking type ω, they need to be compensated with

additional information rents. The type right next to type ω (type "ω + dω") observes a

differential increment of his utility from mimicking in ϵ · ∂
∂ω

(1− F (D (ω) |ω)). The issuer

needs to give up informational rent to all types above ω. Thus, the loss in revenue equates to

ϵ · (1− Φ (ω)) ∂
∂ω

(1−G (D (ω) |ω)).
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The main theoretical insight of the proof is that because of the geometry of debt, the

marginal incentive to increase the face value of a debt security, captured by ∂
∂D(ω)

E (p (ω) ;F ),

has the single crossing property in the Lehmann order. That is, if for some experiment F ′, the

issuer does not have an incentive to increase D (ω) (i.e., ∂
∂D(ω)

E (p (ω) ;F ′) ≤ 0), then for any

F ′′ ⪰Lehmann F
′, the issuer does not have incentives to raise D (ω) (i.e., ∂

∂D(ω)
E (p (ω) ;F ′′) ≤

0).

Put differently, when the experiment linking cashflows y and the liquidity supplier’s in-

formation ω becomes more accurate, information rents become too expensive. To prevent

higher types from mimicking lower types, the optimal contracts designed for the latter must

be distorted to a larger extent. This means that for each liquidity supplier type ω, the face

value of the contract designed for him, D(ω), is weakly smaller when the accuracy of his signal

is higher.

4.4 Information, Efficiency, and Funding Capacity

4.4.1 Gains from Trade

A natural conjecture about the consequences of Theorem 3 is that more information asym-

metry, as captured by a more accurate private signal, is detrimental to efficiency. After all,

as the liquidity supplier becomes more informed, the issuer optimally sells smaller securities

to reduce information rents. The liquidity supplier is the efficient holder of the asset’s future

cashflows (as she is more patient than the issuer); therefore, efficiency might be compromised.

However, as argued above in Proposition 3, there exists a novel effect associated with the

geometry of the optimal securities. The overall effect is thus ambiguous and depends on the

underlying distributions Φ and experiment F .

To formally see this, consider the liquidity supplier’s ex ante valuation of the optimal

securities when the accuracy of the liquidity supplier’s signal is captured by experiment F .

That is,

E (min {y, D∗ (ω;F )}) =

∫
Ω

∫ ∞

0

min {y,D∗ (ω;F )} dF (y|ω) dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

ydF (y|ω) +D∗ (ω;F ) (1− F (D∗ (ω;F ) |ω))

}
dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

(1− F (y|ω)) dy

}
dΦ (ω) . (8)

Increasing the accuracy of experiment F has two effects. On the one hand, as implied by
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Theorem 3, when F becomes more accurate, D∗ (ω;F ) decreases for all ω. This is the direct

effect of selling smaller securities, which reduces the gains from trade. However, increasing the

accuracy of F increases the liquidity supplier’s valuation for concave securities. In general, the

overall effect of increasing asymmetric information among the issuer and the liquidity supplier

has an ambiguous effect on the gains from trade.

4.4.2 Revenue and Funding Capacity

Similarly, the effect of increasing the accuracy of the liquidity supplier’s private signal is

ambiguous for the issuer’s expected revenue (i.e., E {p∗ (ω) + δ (y − s∗ (y|ω))}) and her fund-

ing capacity, which is captured by the expected proceeds using the optimal mechanism (i.e.,

E {p∗ (ω)}). Because in the model both the issuer’s revenue and her funding capacity perfectly

commove with the accuracy of the private signal, we state our results focusing on the first

item. Our results, however, readily extend to the issuer’s funding capacity.

On top of the two effects already described above, there is generally a third effect that

accounts for the change in information rents as the accuracy of the signal improves. Thus,

whether a more accurate private signals increases the issuer’s funding capacity ultimately

depends on the balance of the three effects: In equilibrium, (a) she sells smaller securities

(Theorem 3), (b) the geometry of debt increases the liquidity supplier’s expected value of the

security (Proposition 3), and (c), for a fixed set of securities, the information rents vary.

Lemma 5. Let Π∗ (F ) ≡ E {p∗ (ω) + δ (y − s∗ (y|ω))} be the issuer’s expected revenue when

the liquidity supplier’s private information is parametrized by experiment F . Then,24

Π∗ (F ) = δE {y}+
∫
Ω

∫ D∗(ω;F )

0

(1− F (y|ω))

{
1− δ −

(
1− Φ (ω)

ϕ (ω)

) ∂
∂ω

(1− F (y|ω))
1− F (y|ω)

}
dydΦ (ω) .

(9)

Equation (9) summarizes the three effects described above. Effect (a) is captured by the

integration limit of the inner integral. For any ω, D∗ (ω;F ) decreases with a more informative

24In turn, the expected proceeds of the security sale E {p∗ (ω)} can be obtained by evaluating expression 9
at δ = 0. That is,

E {p∗ (ω)} =

∫
Ω

∫ D∗(ω;F )

0

(1− F (y|ω))

{
1− δ −

(
1− Φ (ω)

ϕ (ω)

) ∂
∂ω (1− F (y|ω))
1− F (y|ω)

}
dydΦ (ω) .
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experiment, together with the fact that25

(1− F (y|ω))

{
1− δ −

(
1− Φ (ω)

ϕ (ω)

) ∂
∂ω

(1− F (y|ω))
1− F (y|ω)

}
≥ 0,∀y ∈ [0, D∗ (ω;F )] ,

jointly imply that the amount of funds raised decreases with informativeness.

The countervailing effect (b) is a consequence of the concavity of debt, which implies that

for any given debt menu with face values captured by D(·), the gains from trade, i.e.,

E (min {y, D (ω)}) =
∫
Ω

{∫ D(ω)

0

(1− F (y|ω)) dy

}
dΦ (ω) ,

are monotone in the informativeness of F (Proposition 3). Finally, effect (c) is obtained from

the fact that

1− δ −
(
1− Φ (ω)

ϕ (ω)

) ∂
∂ω

(1− F (y|ω))
1− F (y|ω)

is strictly decreasing in the informativeness of F (see the arguments establishing Theorem 3).

As a result, the overall effect of increasing the accuracy of the private signal on the issuer’s

revenue is also ambiguous. As suggested by Example 1, this ambiguous effect on both gains

from trade and revenue does not manifest in the classical screening problem where the issuer is

constrained to sell pure equity, a linear instrument of the asset’s cashflows. The new counter-

vailing effect materializes in our environment with the introduction of flexible security design.

Example 1 shows that effect (b) can be large with respect to effects (a) and (c) and ultimately

prevail. However, one can find conditions under which the result is reversed. Lemma 8 in

the Appendix provides sufficient conditions under which effect (a) and (c) dominate effect

(b), thereby implying that the issuer’s revenue and funding capacity suffer when trading with

better-informed liquidity suppliers.

Finally, we further note that the novel effect captured by (b) is quite different from previous

25To see this more clearly, let

ζ (y, ω) ≡ (1− δ) (1− F (y|ω))−
(
1− Φ (ω)

ϕ (ω)

)
∂

∂ω
(1− F (y|ω)) .

The definition of D∗ (ω;F ) implies that ζ (D∗ (ω;F ) , ω) = 0, for all ω ∈ Ω. Moreover,

∂

∂y
ζ (y, ω) = − (1− δ) f(y|ω) +

(
1− Φ (ω)

ϕ (ω)

)
∂

∂ω
f(y|ω).

< −f(y|ω)

(
1− δ − 1− Φ (ω)

ϕ (ω)

∂
∂ωf(y|ω)
f(y|ω)

)
< 0, ∀y < D∗ (ω;F ) .
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results. First, it is distinct from the celebrated linkage principle (Milgrom and Weber [1982]),

which arises in common value auctions, and according to which the seller of the asset prefers

to reduce the extent of asymmetric information to minimize the winner’s curse. In our case,

with a single liquidity supplier, the linkage principle does not apply. Further, Ottaviani and

Prat [2001] discuss two reasons why a seller screening a buyer has incentives to reduce the

degree of asymmetric information between them. First, contrary to our comparative statics

exercise where we modify the accuracy of the liquidity supplier’s private signal, they assume

that any information publicly revealed to the buyer is also observed by the seller. This means

that public announcements dilute the informational advantage of the buyer thereby increasing

the seller’s revenue. Second, in contrast to our assumption that prices are paid in period 1

and cannot be made contingent on the cashflow realizations, their seller can contract on the

information publicly revealed. This last effect is reminiscent of the standard result in Crémer

and McLean [1988] who show that a seller benefits from having access to a signal that correlates

with the buyer’s private information. Our result, in contrast, is a consequence of the geometry

of financial securities. We argue that accounting for this effect is crucial for welfare analysis

and should not be ignored when designing regulations.

5 Conclusions

We study how the flexibility of designing financial securities can help liquidity-constrained

asset owners raise liquid funds from informed investors. We show, perhaps counterintuitively,

that exploiting the information sensitivity of the securities within the menu is generally in-

effective at screening the liquidity suppliers’ private information and is dominated by simple

debt menus. We show that information-insensitive securities allow the issuer to minimize the

liquidity suppliers’ information rents and therefore allow the former to raise larger amounts

of funds.

Our contribution has an important methodological component. We show how, using the

logic of a well-designed replication argument and a suitable generalization of the monotonicity

condition, the standard tools in the screening literature can be extended to the rich environ-

ment of financial securities, i.e., infinite-dimensional objects. One of the advantages of our

direct mechanism approach vis-a-vis former results in the literature is the characterization of

the optimal mechanism with securities and the liquidity supplier’s information rents within

the mechanism. We leverage our characterization to perform novel comparative statics with

respect to the primitives of the informational environment (e.g., the extent of agents’ asym-

metric information) and the issuer’s ability to raise external funding. We show that as the
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liquidity supplier’s private signal becomes more accurate, the issuer optimally designs a menu

of smaller debt securities. Interestingly, the overall effect on surplus and the issuer’s ability to

raise funds remains ambiguous. Our results underscore the fact that, contrary to other type

of goods, financial securities have a geometry associated with them which appears crucial for

welfare analysis and should be accounted for when designing financial regulation.

The results in this paper are worth extending in several directions. The analysis assumes a

single liquidity supplier. It would be interesting to generalize our direct mechanism approach

to the case with multiple bidders and provide a general characterization of the liquidity sup-

pliers’ information rents in such a case.26

In our paper, we show how the optimal mechanism with securities change as we change

the liquidity supplier’s exogenous private information. It is reasonable to conjecture that in

practice, asset owners can manipulate the information asymmetry with respect to the liquidity

supplier. What is the optimal mechanism with securities when the issuer can design both the

security and the information structure? Inostroza and Tsoy [2022] make progress in this

direction and show that an issuer who can also design signal realizations prefers to sell highly

information-sensitive securities.

Appendix A: Proofs Section 3 (Optimality of Debt Menus)

Proof of Proposition 1. To see (1), note that for i, j ∈ {1, ..., N}, with i < j,

UM (ωj;ωj) = Ej (uj (sj))− pj ≥ UM (ωi;ωj)

= Ej (uj (si))− pi

> Ei (ui (si))− pi.

≥ 0

where the first inequality follows from [ICj,i], the second inequality is implied by FOSD (in

turn implied by MLRP) and the monotonicity of the security, and the last inequality follows

from [IRi].

Next, to see property (2), let

ξM ≡ min
n∈{1,...,N}

UM (ωn;ωn) = UM (ω1;ω1) ,

26DeMarzo et al. [2005] follow an indirect approach and find the optimal solution within a fairly large
set of mechanisms. However, their solution, i.e., first-price auction in call-options, can be dominated with
nonstandard mechanisms.
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where the equality is a consequence of property (1). Suppose that ξM > 0. Then, define

M̃ = {s̃n (·) , p̃n}Nn=1 as follows. Let s̃n ≡ sn, and p̃n ≡ pn + ξM for all n ∈ {1, ..., N}.
Increasing the prices by the same amount to all types does not spoil incentive compatibility.

Moreover, increasing the transfers by ξM > 0 implies that individual rationality constraints

are satisfied. The new mechanism raises more funds than the original mechanism while it

preserves the securities offered to the liquidity supplier; therefore, M̃ strictly dominates M.

Finally, to see property (3), suppose that P {y − sN (y) > 0} > 0. Consider the mechanism

M̂ = {ŝn (·) , p̂n}Nn=1 where ŝj ≡ sj and p̂j ≡ pj for all j ∈ {1, ..., N − 1}, ŝN(y) ≡ y for all y

and p̂N ≡ pN +φNEN (y − sN (y)). By construction, under the new mechanism M̂, the utility

of type ωN remains unchanged, whereas the utility of any other type ωj who chooses to report

ωN is strictly smaller than under M. In fact,

UM̂ (ωN ;ωj) = Ej (uj (ŝN))− p̂N

= Ej (uj (sN))− pN + (φjEj (y − sN (y))− φNEN (y − sN (y)))︸ ︷︷ ︸
<0

< UM (ωN ;ωj) ,

where the inequality obtains from the fact that (i) y−sN(y) is monotone and (ii) [y|ω = ωN ] ≻MLRP

[y|ω = ωj]. Therefore, the new mechanism M̂ is feasible. Finally, note that the issuer is

strictly better off since

EN {v (y, p̂N , ŝN)} = p̂N = pN + φNEN (y − sN (y))

> pN + δE (y − sN (y)) .

= EN {v (y, pN , sN)} ,

where the strict inequality follows from assumption (1); therefore,
∑

i Ei {v (y, p̂i, ŝi)}ϕi >∑
i Ei {v (y, pi, si)}ϕi. □

Proof of Theorem 1

We divide the proof of the theorem into 3 steps. Step 1 shows that when, for a given type

ωi, the security si is debt, then for any k > j > i, the local downward incentive constraints

[ICk,j] and [ICj,i] imply the global downward constraint [ICk,i]. Step 2 builds on this result to

show that, in this case, the incentive constraint [ICi+1,i] must necessarily bind at the optimal

mechanism. Step 3 finally proves that, starting from a mechanism where some of the securities
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are not debt, one can construct an alternative mechanism where the nondebt securities are

changed by their payoff equivalent debt security and that this does not compromise upward

incentive constraints while relaxing the binding downward incentive constraints.

Step 1. We show that at any oriented mechanism, if for some i ∈ {1, ..., N − 2} the

security si is debt, then for any k > j > i, the local downward incentive constraints [ICk,j]

and [ICj,i] imply the downward global constraint [ICk,i]. This means that global downward

constraints are redundant and can be ignored.

Proposition 4. [local constraints imply global constraints]Let M = {si, pi}Ni=1

be an oriented mechanism. Assume that, for some i < N , si = min {y,Di} for (λ−almost all)

y, with Di > 0. Suppose that, for any i, j, k ∈ {1, ..., N} with k > j > i, (i) [ICj,i], (ii) [ICk,j],

and (iii) [IRi] jointly hold; then, [ICk,i] must also hold.

Proof. That incentive constraint [ICj,i] holds implies that

Ej {uj (sj)} − pj ≥ Ej {uj (si)} − pi. (10)

Next, we show that

Ek {sj − si} ≥ Ej {sj − si} . (11)

To see this, note first that M is oriented only if Ej {si − sj} ≤ 0. Next, let γ ≥ 1 be implicitly

defined by

Ej {γsi − sj} = 0. (12)

That si is a debt security, together with the fact that γ ≥ 1, imply that γsi−sj satisfies SCFA.
This last observation, together with the fact that [y|ω = ωk] ≻MLRP [y|ω = ωj], jointly imply

that lemma (1) applies and therefore

Ek {γsi − sj} ≤ 0. (13)

As a result, we conclude that

Ej {si − sj} − Ek {si − sj} = Ej {γsi − sj}︸ ︷︷ ︸
=0 from (12)

− Ek {γsi − sj}︸ ︷︷ ︸
≤0 from (13)

+ (γ − 1)× (Ek {si} − Ej {si})︸ ︷︷ ︸
≥0 from MLRP

≥ 0,

which proves the inequality in (11).
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Combining inequalities (10) and (11), and using the fact that Ej {sj − si} ≥ 0 (by orien-

tation), we then obtain that type ωk weakly prefers the security designed for type ωj over the

one designed for type ωi. That is,

Ek {uk (sj)} − pj ≥ Ek {uk (si)} − pi. (14)

Finally, the fact that the local incentive constraint [ICk,j] is also satisfied implies that

Ek {uk (sk)} − pk ≥ Ek {uk (sj)} − pj. (15)

Combining (14) and (15), we thus conclude that type ωk weakly prefers his contract over the

one designed for type ωi. That is,

Ek {uk (sk)} − pk ≥ Ek {uk (si)} − pi,

and hence [ICk,i] is satisfied.

This completes the proof of Step 1. ■

Step 2. We leverage on the result in Step 1 to show that, when si is a debt contract, then

it is without loss to restrict attention to mechanisms for which the local downward incentive

constraints [ICi+1,i] bind.

Corollary 2. Consider any oriented mechanism M = {sn, pn}Nn=1 for which there exists

some j ∈ {1, ..., N − 2} such that (i) sj = min {y,Dj} for (λ−almost all) y, with Dj > 0, and

(ii) [ICj+1,j] does not bind. Then, M is strictly dominated by another feasible and oriented

mechanism for which [ICj+1,j] does bind.

Proof. Suppose by contradiction that there exists some j ∈ {1, ..., N − 2} such that sj =

min {y,Dj} for (λ−almost all) y, with Dj > 0, for which [ICj+1,j] is satisfied with slackness.

The steps establishing proposition 4 then imply that, for any k, i with k ≥ j +1 > i, [ICk,i] is

also slack. That is,

∀k, i with k ≥ j + 1 > i, UM (ωk;ωk)− UM (ωi;ωk) > 0. (16)

The issuer can then construct an alternative mechanism M+ =
{
s+i , p

+
i

}N
i=1

that strictly

dominates M. In fact, for any l ∈ {1, ..., N}, let s+l ≡ sl. For any h ≤ j, let p+h ≡ ph, and for

any h > j, let p+h ≡ ph + ϵ, where ϵ > 0 is small and chosen so that incentive constraints are

36



not spoiled. Note that, for any k′′, k′ ∈ {j + 1, ..., N}, with k′′ ≥ k′,

Ek′′
{
uk′′
(
s+k′′
)}

−p+k′′−
(
Ek′
{
uk′
(
s+k′
)}

− p+k′
)
= Ek′′ {uk′′ (sk′′)}−pk′′−(Ek′ {uk′ (sk′)} − pk′) ≥ 0,

and therefore [ICk′′,k′ ] trivially holds. That, for any i′′, i′ ∈ {1, ..., j}, [ICi′′,i′ ] holds, follows

from the facts that M is feasible and that, for any i < j,
(
s+i , p

+
i

)
= (si, pi). Finally, that

under M+, for any k, i with k ≥ j + 1 > i, [ICk,i] holds for any

ϵ ∈
(
0, min

k,i:k≥j+1>i
(UM (ωk;ωk)− UM (ωi;ωk))

)
follows from the observation in (16).

This completes the proof of Step 2. ■

Step 3. We finally show that for any oriented mechanism M, if we let i+ 1 ≤ N be the

smallest type for whom his security si+1 is not debt, we can improve upon the issuer’s payoff

by swapping security si+1 for the payoff-equivalent (according to ωi+1’s beliefs) debt security

sDi+1 without spoiling upward incentive constraints [ICh,i+1], for h ≤ i.

First, we prove an intermediate result.

Proposition 5. [Pooling]Let M = {si, pi}Ni=1 be a feasible mechanism. Assume that, for

some i < N , si = min {y,Di} with Di > 0, for (λ−almost all) y. Suppose that, for some

j > i, [ICi,j] and [ICj,i] are both binding. If si (y) ̸= sj (y) over a set with positive λ-measure,

then there exists another mechanism M̂ = {ŝi, p̂i}Ni=1 with ŝi = ŝj that strictly dominates M.

Proof. That [ICi,j] and [ICj,i] are both binding implies that

φiEi {si − sj} = pi − pj = φjEj {si − sj} . (17)

Assume next that si ̸= sj over a set with positive λ-measure. We show that Ei {si − sj} > 0.

Suppose by contradiction that Ei {si − sj} ≤ 0. This implies that there must exist γ ≥ 1 so

that

Ei {γsi − sj} = 0. (18)

The fact that si is a debt security, together with the assumption that si ̸= sj, then jointly

imply that γsi − sj satisfies SSCFA, and therefore, lemma 1 implies that

Ej {γsi − sj} < 0. (19)
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Thus,

Ei {si − sj} − Ej {si − sj} = Ei {γsi − sj}︸ ︷︷ ︸
=0 from (18)

− Ej (γsi − sj)︸ ︷︷ ︸
<0 from (19)

+ (γ − 1)× (Ej {si} − Ei {si})︸ ︷︷ ︸
>0 from MLRP

> 0,

which contradicts equation (17). Thus, Ei {si − sj} > 0.

Assume then that si ̸= sj over a set with positive λ-measure and that Ei {si − sj} > 0.

Equation (17) then implies that (a) Ej {si − sj} > 0 and (b) pi > pj. This, in turn, means

that there exists an alternative mechanism, M̂, identical to M except for the fact that it

offers contract (ŝj, p̂j) = (si, pi) to type ωj. In other words, M̂ deletes the contract offered

to type ωj under the mechanism M and replaces it by the debt contract offered to type ωi.

Clearly, the new mechanism M̂ is still feasible as the contract (si, pi) was already available

under M. Moreover, M̂ strictly dominates M as p̂j = pi > pj and p̂l = pl for any l ̸= j. This

proves the proposition.

Next, consider a candidate oriented mechanism M = {sn, pn}Nn=1. Proposition 1 and Lem-

mas 2 - 4 jointly imply that it is without loss of optimality to restrict attention to mechanisms

satisfying (A) s1 = min {y,D1} for (λ−almost all) y; (B) sN = y for (λ−almost all) y ; (C)

p1 = E1 {s1} ; (D) for any j, k with j < k, Ek {sk − sj} ≥ 0 (lemma 3). Assume further

that there exists i ≥ 1, so that (E) for any h ≤ i, sh = min {y,Dh} for (λ−almost all)

y, and, by means of corollary (2) that (F) for any h ≤ i, [ICh+1,h] binds. Finally suppose

that si+1 is not a debt contract. We show that we can construct a new oriented mechanism

M̃ ≡ {s̃h, p̃h} that strictly dominates M̃. In fact, for any h ̸= i + 1, let (s̃h, p̃h) ≡ (sh, ph),

and let s̃i+1 ≡ min {y,Di+1} where Di+1 is such that Ei+1 {s̃i+1 − si+1} = 0 and p̃i+1 ≡ pi+1.

Note that the fact that, under M, [ICi+1,i] binds implies that

p̃i+1 = pi+1 = Ei+1 {ui+1 (si+1)− ui+1 (si)}+ pi = Ei+1 {ui+1 (s̃i+1)− ui+1 (s̃i)}+ p̃i. (20)

Claim 1. Under the new mechanism M̃, [IRi+1] and [ICi+1,h] hold for any h ̸= i+ 1.

Proof. The proof follows from noting that, by construction, for any h ̸= i + 1, (s̃h, p̃h) =

(sh, ph) and the fact that the new contract makes type ωi+1 indifferent between the new and

the former contract. That is, UM̃ (ωi+1;ωi+1) = UM (ωi+1;ωi+1). The properties then are

inherited from mechanism M. q.e.d.
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Claim 2. Under the new mechanism M̃, for any h ≤ i, [ICh,i+1] holds.

Proof. Property (D) above, together with the construction of M̃, jointly imply that, for

any h ≤ i,

Ei+1 {s̃i+1 − s̃h} = Ei+1 {si+1 − sh} ≥ 0,

and therefore thatDi+1 ≥ Dh. This observation, in turn, implies that s̃i+1−s̃h is nondecreasing
and, as a result, for any h ≤ i,

Eh {uh (s̃i+1)− uh (s̃h)} = Eh {uh (s̃i+1)− uh (s̃i)}+ Eh {uh (s̃i)− uh (s̃h)}

≤ Ei+1 {ui+1 (s̃i+1)− ui+1 (s̃i)}+ Eh {uh (s̃i)− uh (s̃h)}

= p̃i+1 − p̃i + Eh {uh (s̃i)− uh (s̃h)}

≤ p̃i+1 − p̃i + p̃i − p̃h

= p̃i+1 − p̃h

where the first inequality follows from MLRP and the monotonicity φn, the second equality

follows from using the result in equation (20), the second inequality obtains from the fact

that, for any h ≤ i, [ICh,i] holds, which is inherited from the feasibility of M. As a result,

under the mechanism M̃, for any h ≤ i, [ICh,i+1] holds. q.e.d.

Claim 3. Under the new mechanism M̃, for any k > i+ 1, [ICk,i+1] holds with slackness.

The construction of M̃, together with the fact that si+1− s̃i+1 satisfies SSCFB (recall that

s̃i+1 is a debt security), jointly imply that by virtue of lemma 1, for any k > i+ 1,

Ek {si+1 − s̃i+1} > 0. (21)

The fact that, under M, [ICk,i+1] holds thus implies that

Ek {uk (s̃k)} − p̃k = Ek {uk (sk)} − pk,

≥ Ek {uk (si+1)} − pi+1

> Ek {uk (s̃i+1)} − p̃i+1,

where the equality is by construction; the first inequality follows from the incentive compati-

bility of the original mechanism M; the strict inequality follows from (21) above. This proves

the claim. q.e.d.

Claims (1)-(3) then jointly imply that M̃ is feasible. Furthermore, Claim (3) together

with the steps establishing Lemma 4 jointly imply that, for any k, h with k > i+1 ≥ h, [ICk,h]
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does not bind. That is,

∀k, h with k > i+ 1 ≥ h, UM̃ (ωk;ωk)− UM̃ (ωh;ωk) > 0. (22)

This observation implies that, for any k > i + 1, we can increase the transfers p̃k and still

respect feasibility.

Rigorously, we can construct yet another feasible mechanism M+ = {s+n , p+n }
N
i=1 that

strictly dominates M̃. In fact, for any n ∈ {1, ..., N}, let s+n ≡ sn, for any h ≤ i + 1, let

p+h ≡ p̃h, and for any h > i+ 1, let p+h ≡ p̃h + ϵ, where ϵ > 0 is small and chosen so that

ϵ ∈
(
0, min

k,h:k>i+1≥h
(UM (ωk;ωk)− UM (ωi;ωk))

)
Note that, for any k′′, k′ ∈ {i+ 2, ..., N},

Ek′′
(
uk′′
(
s+k′′
))

− p+k′′ = Ek′′ (uk′′ (sk′′))− pk′′ ≥ Ek′ (uk′ (sk′))− pk′ = Ek′
(
uk′
(
s+k′
))

− p+k′ ,

and therefore [ICk′′,k′ ] trivially holds. That, for any h′′, h′ ∈ {1, ..., i+ 1}, [ICh′′,h′ ] holds,

follows from the fact that M̃ is feasible and the fact that, for any h ≤ i+1,
(
s+h , p

+
h

)
= (sh, ph).

Finally, that under M+, for any k, h with k > i+1 > h, [ICk,h] holds, follows from the choice

of ϵ and the observation in (16). This completes Step 3 and formally proves the Theorem. □

Proof of Lemma 4.

The result in theorem 1 implies that we can restrict attention to mechanisms with only debt

securities, that is, mechanisms satisfying that, for any n, sn = min {y,Dn} for all y, where

Dn > 0 and is increasing in n, and DN = +∞. Moreover, Step 2 in the proof theorem 1

implies that we can restrict attention, without loss, to mechanisms satisfying that, for any

j > 1, [ICj,j−1] binds. Finally, because of proposition 1, we assume that p1 = E {min {y, D1}}.
Together, these properties imply that

Ej {uj (min {y, Dj})} − pj = Ej {uj (min {y, Dj−1})} − pj−1,
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and therefore, for any j > 1,

pj = Ej {uj (min {y, Dj})} − Ej {uj (min {y, Dj−1})}+ pj−1

=

(
j∑

n>1

En {un (min {y, Dn})} − En {un (min {y, Dn−1})}

)
+ E1 {u1 (min {y, D1})} .

This further implies that the amount of funds raised is given by27

N∑
j=1

pnϕn = E1 {u1 (min {y,D1})}+
∑
j>1

ϕj

j∑
n>1

En {un (min {y, Dn})} − En {un (min {y, Dn−1})}

= E1 {u1 (min {y, D1})}+
N∑

n>1

 N∑
j=n

ϕj

 (En {un (min {y, Dn})} − En {un (min {y, Dn−1})}) .

=

N∑
n=1

ϕn

∫ ∞

0
un (min {y,Dn})

(
1−

(
1− Φn

ϕn

)(
f (y|ωn+1)− f (y|ωn)

f (y|ωn)

))
dF (y|ωn) .

As a result, the issuer’s problem reduces to find an increasing sequence (Dn)
N
n=1 to maximize

N∑
n=1

pnϕn =
N∑

n=1

ϕn

∫ ∞

0

un (min {y,Dn})
(
1−

(
1− Φn

ϕn

)(
f (y|ωn+1)− f (y|ωn)

f (y|ωn)

))
dF (y|ωn) ,

as claimed.□

Proof of Lemma 2.

Assumptions 2 and 3 jointly imply that, for each n, the pointwise-optimal solution of the

problem (that is, disregarding the monotonicity condition in (3)), given by

D∗
n ≡ argmax

D

∫
R+

un (min {y,D}) (1−R (y, ωn)) dF (y|ωn) , (23)

is monotone in n. This follows from noting that under assumptions 2 and 3, the objective is

supermodular (y, ωn). Indeed, note that the fact that un (x) = φnx+ νn, implies that

∂

∂D

∫ ∞

0
un (min {y,D}) (1−R (y, ωn)) dF (y|ωn) = φn

∫ ∞

D
(1−R (y, ωn)) dF (y|ωn) ,

= φn

(
1− F (y|ωn)−

∫ ∞

D
R (y, ωn) dF (y|ωn)

)
27In the formula, with abuse notation and let DN = +∞ (claim 3 in Proposition 1).
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When assumptions (2) and (3) hold, the last expression becomes monotone in ωn. Hence, the

pointwise-optimal solution D∗
n is necessarily nondecreasing (Milgrom and Shannon [1994]).

This rules out the possibility of bunching.□

Appendix B: Proof of Theorem 2

Discrete Case

Consider the relaxed program (6) where only the local incentive constraints are imposed.

Denote as M̂ = {ŝn, p̂n}Nn=1 the solution of such a problem. The issuer’s payoff under M̂
is weakly higher than under mechanism M⋆ that solves program (1), because the set of

constraints in the former program is a strict subset of the latter.

We argue that in the relaxed problem, local-downward incentive constraints must bind.

Suppose by contradiction that a constraint [ICi+i,i], i ≤ N − 1, does not bind. The issuer can

construct an alternative mechanismM# =
{
s#n , p

#
n

}N
n=1

, identical to M̂ but where p#n = p̂n+ϵ

for all n ≥ i+ 1, where

ϵ = Ei+1 {ui+1 (ŝi+1)− ui+1 (ŝi)} − (p̂i+1 − p̂i) .

That is, ϵ is chosen so that the downward, local incentive compatibility constraint of type ωi+1

is binding. The new mechanism further increases the price to all types above n ≥ i+ 1. The

new mechanism is feasible. Indeed, for any n ≥ i+ 1,

UM# (ωn;ωn) = UM̂ (ωn;ωn)− ϵ

≥ UM̂ (ωi+1;ωi+1)− ϵ

= UM̂ (ωi;ωi+1)

> UM̂ (ωi;ωi) ≥ 0,

thereby implying that M# is individual rationality. Further, (local) incentive compatibility

is in turn implied by construction. The new mechanism sells the same securities than M̂ at

weakly larger prices and is therefore preferred by the issuer. This contradicts the optimality

of M̂.

Next, we build on the fact that the constraints [ICi+i,i] bind, i ≤ N − 1, to rewrite the
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issuer’s payoff. Lemma 4 implies that

N∑
n=1

ϕnpn =
N∑

n=1

ϕn

∫ ∞

0

sn (y)

(
1−

(
1− Φn

ϕn

)(
fn+1 (y)− fn (y)

fn (y)

))
dFn (y) .

Therefore, the maximizing the issuer’s payoff,
∑N

n=1 ϕn

(
pn + δ

∫∞
0

(y − sn(y)) dFn(y)
)
, is equiv-

alent to maximizing

V
(
{sn}Nn=1

)
≡

N∑
n=1

ϕn

∫ ∞

0

sn (y)

(
1− δ −

(
1− Φn

ϕn

)(
fn+1 (y)− fn (y)

fn (y)

))
dFn (y) .

Lemma 6. Consider an arbitrary incentive compatible mechanism M = {sn, pn}Nn=1. Suppose

that there exists a nonempty set ΩNon-debt ⊆ {1, ..., N}, such that, for any n ∈ ΩNon-debt, sn is

not a debt security. There exists a set of debt securities
{
s##
n

}
n∈ΩNon-debt so that the mechanism

M## constructed from M by replacing sn for s##
n for all n ∈ ΩNon-debt, dominates M for the

issuer.

Proof. For any n ∈ ΩNon-debt, let

kn(y; δ) ≡ 1− δ −
(
1− Φn

ϕn

)(
fn+1 (y)− fn (y)

fn (y)

)
.

The issuer’s objective can then be written as

V
(
{sn}Nn=1

)
=

N∑
n=1

ϕn

∫ ∞

0

sn (y) kn (y; δ) dFn (y) .

The fact that f (y|ω) satisfies MLRP implies that kn (·; δ) is monotonically decreasing and

satisfies the SSCFA property. For each n ∈ {1, ..., N}, let yn(δ) be the unique solution to

kn(yn(δ); δ) = 0. From the definition of D⋆
n in 5, we have that yn(δ) > D⋆

n, for all n. The

constraint that all securities in S are nondecreasing, together with the fact that kn(y; δ) < 0

for all y > yn (δ), jointly imply that, any security s̃(·|ω) in S which fails to be constant to the

right of yn (δ) is dominated by the security

s#n (y) ≡ s̃n(y)1{y ≤ yn(δ)}+ s̃n(yn(δ))1{y > yn(δ)}.

Finally, the fact that kn(y; δ) > 0 for all y < yn (δ) implies that any security s̄n(y) ∈ S,
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also satisfying s̄n(y) = d for all y ≥ yn(δ), is weakly dominated by the security

s##(y|ω) = min {y, d} · 1{y < yn(δ)}+ d · 1{y ≥ yn(δ)}.

= min {y, d} .

This proves the lemma.□

Finally, consider the function

χ (n,D) ≡
∫ D

0

ykn(y; δ)dFn(y) +D

∫ ∞

D

kn(y; δ)dFn(y).

We show that χ (n,D) is supermodular. Indeed,

∂χ

∂D
(n,D) =

∫ ∞

D

kn(y; δ)dFn(y),

= (1− δ) (1− Fn (D))−
(
1− Φn

ϕn

)
∆n.

and therefore, for any n ∈ {1, ..., N − 1},

∂χ

∂D
(n+ 1, D)− ∂χ

∂D
(n,D) = (1− δ)∆n︸ ︷︷ ︸

>0 (FOSD)

−
((

1− Φn+1

ϕn+1

)
∆n+1 −

(
1− Φn

ϕn

)
∆n

)
︸ ︷︷ ︸ > 0

<0 (Assumptions 2,3)

.

Topkis Theorem then implies that the value ofDn that pointwise maximizes χ (n,D), D⋆
n, must

be increasing in n. This further implies that the set of debt securities {ŝn = min {y,D⋆
n}}

N
n=1

is oriented. The orientation of {ŝn}Nn=1 in turn implies that,

Finally, by restricting attention to oriented mechanisms, we can use the same arguments

establishing Step 1 in the proof of Theorem 1 to show that any mechanism respecting local,

downward incentive constraints is globally incentive compatible (i.e., the incentive constraints

[ICi,j], i ∈ {1, ..., N}, |j − i| > 1 are also satisfied). Thus, the solution to the relaxed program

M̂ is also feasible at the original program (1) and must therefore be optimal.

Continuum Case

Re-statement of the Theorem.

Theorem 4. Suppose that Ω ≡ [ω, ω] and that assumptions (2) and (3) hold. Further, as-

sume that for all ω ∈ Ω, E
{
y

∂f(y|ω)
∂ω

f(y|ω) |ω
}
< ∞. Then, the revenue maximizing mechanism is
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characterized by a menu of debt securities given by

s∗(y|ω) = min{y,D∗(ω)}

where D∗(ω) is defined as the unique solution of

∫ ∞

D∗(ω)

{
1− δ − 1− Φ(ω)

ϕ(ω)

∂
∂ω
f (y|ω)
f (y|ω)

}
dF (y|ω) = 0. (24)

Proof. First note that, because E
{
y

∂f(y|ω)
∂ω

f(y|ω)

}
< ∞, for any feasible mechanism M =

{s [ω] , p (ω)}ω∈Ω, there exists an integrable function b : Ω → R, satisfying

∣∣∣∣ ∂∂ωUM (ω̃, ω)

∣∣∣∣ =
∣∣∣∣∣E
{
s (y|ω̃)

∂f(y|ω)
∂ω

f (y|ω)

}∣∣∣∣∣ ≤ b (ω) , ∀ω̃, ω.

The arguments in Milgrom and Segal [2002] then imply that, because UM (ω̂;ω) is absolutely

continuous in ω, UM (ω, ω) is absolutely continuous. Furthermore,

UM (ω, ω)− UM (ω, ω) =

∫ ω

ω

(∫ ∞

0

s(y|ω̃) ∂
∂ω

f(y|ω̃)dy
)
dω̃, for Φ− almost all ω.

This means that, for any incentive compatible mechanism, the price paid by type ω is given

by

p (ω) = E {s (y|ω)} − UM (ω, ω)

=

∫
Ω

{∫ ∞

0

s(y|ω)dF (y|ω)−
(∫ ω

ω

(∫ ∞

0

s(y|ω̃) ∂
∂ω

f(y|ω̃)dy
)
dω̃

)}
dΦ (ω)− UM (ω, ω)

=

∫
Ω

∫ ∞

0

(
s(y|ω)

(
1−

(
1− Φ (ω)

ϕ (ω)

) ∂
∂ω
f(y|ω)
f(y|ω)

))
dF (y|ω)dΦ (ω)− UM (ω, ω) ,

and, therefore, we can rewrite the issuer’s payoff, E {p (ω) + δ (y − s (y|ω))}, as

δE {y}+
∫
Ω

(E {s (y|ω)} − UM (ω, ω)− δE {s (y|ω)}) dΦ (ω)− UM (ω, ω)

= δE {y}+
∫
Ω

{∫ ∞

0

(1− δ) s(y|ω)dF (y|ω)−
∫ ω

ω

(∫ ∞

0

s(y|ω̃) ∂
∂ω

f(y|ω̃)dy
)
dω̃

}
dΦ (ω)− UM (ω, ω)

= δE {y}+
∫
Ω

∫ ∞

0

(
s(y|ω)

(
1− δ −

(
1− Φ (ω)

ϕ (ω)

) ∂
∂ω
f(y|ω)
f(y|ω)

))
dF (y|ω)dΦ (ω)− UM (ω, ω) .
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where the second equality obtains from integration by parts.

The next result indetifies a sufficient condition for a mechanism to be incentive compatible.

Proposition 6. Consider an arbitrary mechanism M = {s(·|ω), p (ω)}ω∈Ω satisfying(∫ ∞

0

(s(y|ω)− s(y|ω̂)) ∂

∂ω
f(y|ω)dy

)
· (ω − ω̂) ≥ 0, ∀ω, ω̂ ∈ Ω. (25)

Then, M is incentive compatible.

Proof. Consider an arbitrary mechanism M = {s(·|ω), p (ω)}ω∈Ω satisfying (25). For any

ω, ω̂ ∈ Ω, let

Q (ω̂, ω) ≡ UM (ω, ω)− UM (ω̂, ω) .

Note that, for any ω̂, Q (ω̂, ·) is absolutely continuous. Moreover, Q (ω̂, ω̂) = 0 for all ω̂ ∈ Ω.

This implies that, for any ω, ω̂ ∈ Ω,

Q (ω̂, ω) = Q (ω̂, ω)−Q (ω̂, ω̂)

=

∫ ω

ω̂

∂Q (ω̂, z)

∂ω
dz

=

∫ ω

ω̂

{
d

dω
UM (ω, ω)

∣∣∣∣
ω=z

− ∂

∂ω
UM (ω̂, ω)

∣∣∣∣
ω=z

}
dz

=

∫ ω

ω̂

{∫ ∞

0

(s(y|z)− s(y|ω̂)) ∂

∂ω
f(y|z)dy

}
dz

≥ 0,

where the inequality follows from (25). We thus conclude that UM (ω, ω) ≥ UM (ω̂, ω), for

any ω, ω̂ ∈ Ω.

The strategy of the proof consists in ignoring constraint (25) and finding, for each ω, the

security s∗(·|ω) which pointwise maximizes the issuer’s payoff. We then show that, when (2)

and (3) hold, the securities {s∗(·|ω)}ω∈Ω satisfy constraint (25).

Lemma 7. Consider an arbitrary incentive compatible mechanism M = {s(·|ω), p (ω)}ω∈Ω.
Suppose that there exists a set ΩNon-debt ⊆ Ω with positive Φ−measure, such that, for any ω ∈
ΩNon-debt, s(·|ω) is not a debt security. There exists a set of debt securities

{
s##(·|ω)

}
ω∈ΩNon-debt

so that the mechanism M## constructed from M by replacing s(·|ω) for s##(·|ω) for all

ω ∈ ΩNon-debt, dominates M for the issuer.
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Proof. For any ω ∈ ΩNon-debt, let

k(y, ω; δ) ≡ 1− δ −
(
1− Φ(ω)

ϕ(ω)

) ∂
∂ω
f (y|ω)
f (y|ω)

.

The issuer’s payoff is thus given by

δE {y}+
∫
Ω

∫ ∞

0

s(y|ω)k(y, ω)dF (y|ω)dΦ (ω)− UM (ω, ω) .

The fact that f (y|ω) satisfies MLRP implies that k(·, ω; δ) satisfies the SSCFA property. Let

y0(ω; δ) be the unique solution to k(y0(ω; δ), ω) = 0. From the definition of D∗(ω; δ) in 24, we

must necessarily have that y0(ω; δ) > D∗(ω; δ), for all ω ∈ Ω. The constraint that all securities

in S are nondecreasing, together with the fact that k(y, ω; δ) < 0 for all y > y0 (ω; δ), jointly

imply that, any security s̃(·|ω) in S which fails to be constant to the right of y0 (ω; δ) is

dominated by the security

s#(y|ω) ≡ s̃(y|ω)1{y ≤ y0(ω; δ)}+ s̃(y0(ω; δ)|ω)1{y > y0(ω)}.

Finally, the fact that k(y|ω; δ) > 0 for all y < y0 (ω; δ) implies that any security s̄(y|ω) ∈ S
satisfying s̄(y|ω) = d for all y ≥ y0(ω; δ) is weakly dominated by the security

s##(y|ω) = min {y, d} · 1{y < y0(ω; δ)}+ d · 1{y ≥ y0(ω; δ)}.

= min {y, d} .

This proves the lemma.□

Lemma 7 implies that, for any ω, debt securities pointwise maximize issuer’s payoff. The

issuer then chooses {D (ω)}ω∈Ω to maximize

∫
Ω

{∫ D(ω)

0

yk(y, ω; δ)dF (y|ω) +D (ω)

∫ ∞

D(ω)

k(y, ω; δ)dF (y|ω)

}
dΦ (ω) .

Note that when (2) and (3) hold, the function

χ (ω,D (ω)) ≡
∫ D(ω)

0

yk(y, ω; δ)dF (y|ω) +D (ω)

∫ ∞

D(ω)

k(y, ω; δ)dF (y|ω)
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is supermodular. Indeed,

∂2

∂ω∂D (ω)
χ (ω,D (ω)) =

∂

∂ω

∫ ∞

D(ω)

k(y, ω; δ)dF (y|ω)

=
∂

∂ω

{
(1− δ) (1− F (D (ω) |ω))−

(
1− Φ(ω)

ϕ(ω)

)
∂

∂ω
(1− F (D (ω) |ω))

}
= (1− δ)

∂

∂ω
(1− F (D (ω) |ω))︸ ︷︷ ︸
>0 (FOSD)

− ∂

∂ω

(
1− Φ(ω)

ϕ(ω)

)
︸ ︷︷ ︸

<0 (Assumption2)

∂

∂ω
(1− F (D (ω) |ω))︸ ︷︷ ︸

>0 (FOSD)

−
(
1− Φ(ω)

ϕ(ω)

)
· ∂2

∂ω2
(1− F (D (ω) |ω))︸ ︷︷ ︸
<0 (Assumption3)

> 0.

Topkis Theorem then implies that the value of D (ω) that maximizes (pointwise) χ (ω,D (ω)),

D∗ (ω; δ), must be increasing in ω. This further implies that the constraint (25) is satisfied,

and therefore the set of pointwise optimal securities is feasible.

This completes the proof of the Theorem. □

Appendix C: Additional Proofs

Proof of Example 1. We start by showing that θ orders the experiments in the Lehmann

sense.

Claim 1. For any θ′′ > θ′, F θ′′ ⪰Lehmann F
θ′ .

Proof. For any θ ∈ [0, 1], let F θ
ω

(
ω|yθ > z

)
≡ P

{
ω ≤ ω||yθ > z

}
. Following Theorem 1

in Athey and Levin [2018], it is enough to prove that, for any u : [0, 1] → R satisfying SCFB,∫ 1

0

u (ω) dF θ′

ω

(
ω|yθ′ > z

)
≥ 0 ⇒

∫ 1

0

u (ω) dF θ′′

ω

(
ω|yθ′′ > z

)
≥ 0. (26)

First, note that, for any θ ∈ [0, 1], and any z ∈ [0, 1],
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F θ
ω

(
ω|yθ > z

)
=

P
{
yθ > z|ω ≤ ω

}
ω∫ 1

0
(1− F θ (z|ω̃)) dω̃

=
ω
∫ ω

0

(
1− F θ (z|ω̃)

)
dω̃∫ 1

0
(1− F θ (z|ω̃)) dω̃

=
ω
(
ω −

∫ ω

0
(θ · 1 {ω̃ ≤ z}+ (1− θ) z) dω̃

)
1−

∫ 1

0
(θ · 1 {ω̃ ≤ z}+ (1− θ) z) dω̃

=
ω
(
ω − (1− θ) zω −

∫ ω

0
(θ · 1 {ω̃ ≤ z}) dω̃

)
1− z

=
ω (ω − θmin {ω, z} − (1− θ) zω)

1− z

=

ω2 (1− θ) if ω < z

ω(ω−(1−θ)zω−θz)
1−z

if ω ≥ z

This then implies that, for any ω ̸= z,

f θ
ω

(
ω|yθ > z

)
=

2ω (1− θ) if ω < z

2ω(1−(1−θ)z)−θz
1−z

if ω > z.

We further note that F θ
ω

(
ω|yθ > z

)
is continuous at ω = z and hence absolutely continuous

over [0, 1].

Finally, we note that

d
dω
f θ
ω

(
ω|yθ > z

)
f θ
ω (ω|yθ > z)

=

 1
ω

if ω < z

2(1−(1−θ)z)
2ω(1−(1−θ)z)−θz

if ω > z

is nondecreasing in θ for any ω ∈ [0, 1). This implies that the density f θ
ω

(
ω|yθ > z

)
is log-

supermodular in (θ, ω). Lemma 1 then implies that for any u : [0, 1] → R satisfying SCFB,

(26) is satisfied. This proves the claim. q.e.d.

Claim 2. Suppose the issuer is restricted to use linear securities,

s ∈ SE ≡ {s ∈ S : ∃α > 0, s (y) = αy, ∀y ∈ [0, 1]} .
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Then, the (restricted) optimal mechanism is characterized by

α∗
θ (ω) = 1

{
ω ≥ ω∗

θ ≡ max

{
3θ − 1

4θ
, 0

}}
.

Proof. We consider mechanisms of the form Mθ
E =

{
sθE [ω] , pθE (ω)

}
ω∈[0,1], where for all

ω ∈ [0, 1], sθE (y|ω) = αθ (ω) y and pθE (ω) ∈ R. Note that for any ω ∈ [0, 1],

E
{
yθ|ω = ω

}
= θω +

1− θ

2︸ ︷︷ ︸
≡hθ(ω)

.

Furthermore, hθ (ω) = E
{
yθ|ω

}
∼ U

[
1−θ
2
, 1+θ

2

]
.

Next, for any ω, ω̃ ∈ [0, 1] let

UMθ
E
(ω̃;ω) = αθ (ω̃)hθ (ω)− pθE (ω̃)

be the liquidity supplier’s payoff when his true type is ω and he chooses to report ω̃. The

liquidity supplier’s IC constraint is then given by

UMθ
E
(ω;ω) = max

ω̃
UMθ

E
(ω̃;ω) .

Using the envelope theorem, we obtain that

d

dω
UMθ

E
(ω;ω) = αθ (ω)

dhθ (ω)

dω
, ∀ω ∈ [0, 1] .

This further implies that

UMθ
E
(ω;ω) =

∫ ω

0

αθ (ω̃)
dhθ (ω̃)

dω
dω̃.

We conclude that

pθE (ω) = αθ (ω)hθ (ω)−
∫ ω

0

αθ (ω̃)
dhθ (ω̃)

dω
dω̃,
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and therefore

E
{
pθE (ω)

}
=

∫ 1

0

{
αθ (ω)hθ (ω)−

∫ ω

0

αθ (ω̃)
dhθ (ω̃)

dω
dω̃

}
dω

=

∫ 1

0

{
αθ (ω)

(
hθ (ω)− (1− ω)

dhθ (ω)

dω

)}
dω

=

∫ 1

0

{
αθ (ω)

(
θω +

1− θ

2
− (1− ω) θ

)}
dω

=

∫ 1

0

{
αθ (ω)

(
θ

(
4ω − 3

2

)
+

1

2

)}
dω.

The issuer’s can then be written as

max
{αθ(ω)}

ω∈[0,1]

E
{
pθE (ω)

}
=

∫ 1

0

{
αθ (ω)

(
θ

(
4ω − 3

2

)
+

1

2

)}
dω

s.t. αθ (·) nondecreasing.

The issuer therefore optimally sets

αθ
∗ (ω) = 1

{
ω ≥ ω∗

θ ≡ max

{
3θ − 1

4θ
, 0

}}
,

as claimed. q.e.d.

Claim 3. The optimal mechanism is characterized as follows. For any θ ∈
(
1
7
, 1
)
, D∗

θ (ω) = ω

for all ω ∈ [0, 1]. In turn, for any θ ∈
(
0, 1

7

)
, D∗

θ (ω) = 1 for all ω ∈ [0, 1].

Proof. Fix any θ ∈ (0, 1) and let Mθ
∗ =

{
sθ ≡ min

{
y,Dθ

∗ (ω)
}
, pθ∗ (ω)

}
ω∈∈[0,1] represent

the optimal menu of debt contracts (existence follows from the derivation below). Next, for

any ω, ω̃ ∈ [0, 1] let

U θ
Mθ

∗
(ω̃;ω) ≡ E

{
min

{
y, Dθ

∗ (ω̃)
}
|ω
}
− pθ∗ (ω̃) .

= (1− θ)

(
Dθ

∗ (ω̃)−
Dθ

∗ (ω̃)
2

2

)
+ θmin

{
ω,Dθ

∗ (ω̃)
}
− pθ∗ (ω̃)

The fact that, downward incentive compatibility constraints bind implies that

d

dω
U θ
Mθ

∗
(ω;ω) = θ · 1 {D (ω) > ω} ,
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and, therefore,

U θ
Mθ

∗
(ω;ω) = U θ

Mθ
∗
(0; 0) + θ

∫ ω

0

1 {D (ω̃) > ω̃} dω̃.

As a result, we obtain that the issuer’s revenue is given by

E
{
pθ (ω)

}
=

∫ 1

0

{
(1− θ)

(
Dθ

∗ (ω)−
Dθ

∗ (ω)
2

2

)
+ θ

(
min{ω,Dθ

∗ (ω)} −
∫ ω

0
1{Dθ

∗ (ω̃) > ω̃}dω̃
)}

dω

=

∫ 1

0

{
(1− θ)

(
Dθ

∗ (ω)−
Dθ

∗ (ω)
2

2

)
+ θmin{ω,Dθ

∗ (ω)} − θ (1− ω) 1{Dθ
∗ (ω) > ω}

}
dω.

Observe first that Dθ
∗ (ω)≥ω for all ω. Indeed, for any ω, the first term is strictly in-

creasing in Dθ
∗ (ω), whereas the second term is also strictly increasing for any Dθ

∗ (ω) < ω.

The last term, in contrast, is constant in Dθ
∗ (ω) everywhere except at ω where it suffers

a discontinuous jump. Any menu for which Dθ
∗ (ω) < ω over a set with positive measure

Ω− ≡
{
ω ∈ [0, 1] : Dθ

∗ (ω) < ω
}

can then be strictly dominated by slightly increasing the

value of Dθ
∗ (·) for ω ∈ (supΩ− − ϵ, supΩ−), for ϵ > 0 small.

Next, note that for any ω for which Dθ
∗ (ω) > ω, it is (pointwise) optimal to set Dθ

∗ (ω) = 1,

as both the second and third terms are invariants to increments in Dθ
∗ (ω), whereas the first

term is strictly increasing in Dθ
∗ (ω).

We conclude that the optimal mechanism must take the form

Dθ
∗ (ω)=

ω , for ω< x

1 , for ω≥ x

for some x ∈ [0, 1]. We thus optimize E
{
pθ∗ (ω)

}
by changing the value of x. For any such a

menu, we have

E
{
pθ∗ (ω)

}
= (1− θ)

(∫ x

0

(
ω − ω2

2

)
dω +

1− x

2

)
+ θ

∫ 1

0

(ω − (1− ω) 1 {ω > x}) dω.

This further implies that

d

dx
E
{
pθ∗ (ω)

}
=

(1− x) ((1− θ)x− (1− 3θ))

1− θ
.

We finally note that, for any θ ∈
[
1
3
, 1
)
, d

dx
E
{
pθ∗ (ω)

}
≥ 0 for all x ∈ [0, 1]. We conclude that

in that case, it is optimal to choose x = 1, and therefore Dθ
∗ (ω) = ω for all ω ∈ [0, 1]. In

contrast, when θ < 1/3, E
{
pθ∗ (ω)

}
is quasi-convex in x and the optimal choice is found at

the corners. We thus need to compare the value of E
{
pθ∗ (ω)

}
at x = 0 and x = 1. We find
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that

E
{
pθ∗ (ω)

}∣∣
x=1

= (1− θ)

(∫ 1

0

(
ω − ω2

2

)
dω

)
+ θ

∫ 1

0

ωdω

=
2 + θ

6
,

whereas

E
{
pθ (ω)

}∣∣
x=0

=
1− θ

2
+ θ

∫ 1

0

(2ω − 1) dω,

=
1− θ

2
.

We conclude that for any θ ∈
(
1
7
, 1
3

)
, it is optimal to set x = 1, and then Dθ

∗ (ω) = ω for all

ω ∈ [0, 1], whereas, for any θ ∈
(
0, 1

7

)
, it is optimal to set x = 0, and then Dθ

∗ (ω) = 1 for all

ω ∈ [0, 1]. q.e.d.

Proof of Proposition 2. Claim (i) follows from Proposition 2 in Jewitt [2007] which

states that, an experiment F ′′ Lehmann-dominates another experiment F ′, if and only if, for

any arbitrary prior distribution Φ, the induced joint distributions F′′
Φ and F′

Φ are ranked in

the positive quadrant dependence (PQD) order.28 For random vectors of dimension N = 2,

the PQD order, in turn, is equivalent to the supermodular order (Tchen [1980]). Claim (ii)

is standard (see, e.g., Müller and Stoyan [2002]) and follows from the fact that the dom-

ination in the supermodular order implies a higher degree of interdependence. Claim (iii)

follows from noting that, for any nondecreasing function u (·), and any z ∈ [0, 1], the function

I {Φ (ω) ≥ z}u (y) is supermodular in (y, ω) and, therefore,∫
R+

∫
Ω

I {Φ (ω) ≥ z}u (y) dF′′
Φ (y, ω) ≥

∫
R+

∫
Ω

I {Φ (ω) ≥ z}u (y) dF′
Φ (y, ω) .

This means that, for any nondecreasing function u (·),

EF′′
Φ
(u (y) |Φ (ω) ≥ z) ≥ EF′

Φ
(u (y) |Φ (ω) ≥ z) ,

and, therefore ,

F′′
Φ (y|Φ (ω) ≥ z) ⪰FOSD F′

Φ (y|Φ (ω) ≥ z) , ∀z ∈ [0, 1].

28A distribution P ∈ ∆RN dominates Q ∈ ∆RN in the PQD order, if P (z1, ..., zN ) ≤ Q (z1, ..., zN ),
∀ (z1, ..., zN ) ∈ RN . See, e.g., Shaked and Shanthikumar [2007].
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In other words, F′′
Φ dominates F′

Φ in the Monotone Information Order for Nondecreasing

objective functions (MIO-ND) sense (see Athey and Levin [2018]). Theorem 1 in Ganuza and

Penalva [2010] then implies that EF′′
Φ
(y|ω) ⪰cvx EF′

Φ
(y|ω). □

Proof of Lemma 5. Note that the issuer’s revenue is given by

Π∗ (F ) = E {p∗ (ω;F ) + δ (y − s∗ (y|ω))} = δE {y}+ E {p∗ (ω;F )− δs∗ (y|ω)} .

The assumptions in the model guarantee that as the accuracy of the private signal changes,

the marginal distribution of y remains unchanged. Thus, the issuer’s revenue dependence on

F is fully determined by Π∗ (F )− δE {y} = E {p∗ (ω;F )− δs∗ (y|ω)} , where

Π∗ (F )− δE {y}

=

∫
Ω

{∫
R+

min {y,D∗ (ω;F )}

(
1− δ −

(
1− Φ (ω)

ϕ (ω)

)( ∂f(y|ω)
∂ω

f (y|ω)

))
dF (y|ω)

}
dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

y

(
1− δ −

(
1− Φ (ω)

ϕ (ω)

)( ∂f(y|ω)
∂ω

f (y|ω)

))
dF (y|ω)

}
dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

(1− δ) (F (D∗ (ω;F ) |ω)− F (y|ω)) dy

−
(
1− Φ (ω)

ϕ (ω)

)∫ D∗(ω;F )

0

∂

∂ω
(F (D∗ (ω;F ) |ω)− F (y|ω)) dy

}
dΦ (ω)

=

∫
Ω

∫ D∗(ω;F )

0

(1− F (y|ω))

{
1− δ −

(
1− Φ (ω)

ϕ (ω)

) ∂
∂ω

(1− F (y|ω))
1− F (y|ω)

}
dydΦ (ω) ,

where the second equality obtains from the definition of D∗ (ω;F ), the third equality follows

from applying integration by parts, and the fourth equality obtains from rearranging terms

and using the definition of D∗ (ω;F ), which implies that

(1− δ) (1− F (D∗ (ω;F ) |ω))−
(
1− Φ (ω)

ϕ (ω)

)
∂

∂ω
(1− F (D∗ (ω;F ) |ω)) = 0.

This completes the proof of the lemma. □

Lemma 8. Suppose that δ = 0 (strong liquidity constraints) and that, for all y, the function

ζ (y, ω;F ) ≡ (1− Φ (ω)) (1− F (y|ω))

has increasing differences in ω and accuracy. Then, for any F ′′ ⪰Lehmann F
′, E (p∗ (ω;F ′′)) ≤
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E (p∗ (ω;F ′)).

Proof. From the derivation above, we know that

E (p∗ (ω;F )) =

∫
Ω

∫ D∗(ω;F )

0

{
1− F (y|ω)−

(
1− Φ (ω)

ϕ (ω)

)
∂

∂ω
(1− F (y|ω))

}
dydΦ (ω) .

=

∫
Ω

∫ D∗(ω;F )

0

− ∂

∂ω
ζ (y, ω;F ) dydω

Assuming that ζ (y, ω;F ) has increasing differences in ω and accuracy is equivalent to

stating that effect (c) dominates effect (b). When ζ (y, ω;F ) has this property, the amount of

funds raised E (p∗ (ω;F )) decreases with the accuracy of F .

Intuitively, for each type ω, − ∂
∂ω
∂ζ (y|ω, F ) represents the issuer’s marginal incentive to

increase the face value of type ω’s debt contract accounting for the information rents that

have to be given up to all types above ω. Indeed, from equation (7), we have

∂

∂D (ω)
E (p (ω) ;F ) = −∂ζ (y, ω;F )

∂ω
.

The increasing difference assumption then guarantees that as the liquidity supplier’s private

signal becomes more informative, the issuer’s virtual valuation (that is, gains from trade minus

information rents) grows smaller, thereby reducing the issuer’s expected revenue. When this

is the case, facing a more informed liquidity supplier hurts the issuer’s ability to raise liquid

funds.

Appendix D: Proof of Theorem 3

Proof. Let F̃ be an arbitrary experiment. Define ψF̃ [D] as the issuer’s revenue when she

proposes a menu of incentive compatible debt contracts characterized by {D (ω)}ω∈Ω. By

virtue of lemma 4, this means that

ψF̃ [D] =

∫
Ω

(∫
R+

u (min {y,D (ω)} , ω)

(
1−

(
1− Φ (ω)

ϕ (ω)

)( ∂
∂ω
f (y|ω)
f (y|ω)

))
dF (y|ω)

)
dΦ (ω) .

We show that the function ψF̃ [D] has the single crossing differences property in
(
D, F̃

)
.

That is, we show that, for any D′′ > D′, and any F ′′ ⪰Lehmann F
′,

ψF ′ [D′′]− ψF ′ [D′] ≤ 0 ⇒ ψF ′′ [D′′]− ψF ′′ [D′] ≤ 0.
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To see this, first note that

∂

∂D (ω)
ψF [D] = ϕ (ω) (1− F (D (ω) |ω))− (1− Φ (ω))

∂

∂ω
(1− F (D (ω) |ω))

= − ∂

∂ω
((1− Φ (ω)) (1− F (D (ω) |ω))) . (27)

Next, let y′′ (resp. y′) be the cashflows obtained from drawing ω from Φ and then applying

the experiment F ′′ (resp. F ′). Claim (1) in proposition 2 implies that the induced marginal

distributions of y′′ and y′ coincide and equals ΨΦ. The fact that F
′′ ⪰Lehmann F

′ implies that,

for all z ∈ [0, 1], 29

∂
∂ω
f ′′ (ω|ΨΦ (y′′) ≥ z)

f ′′ (ω|ΨΦ (y′′) ≥ z)
≥

∂
∂ω
f ′ (ω|ΨΦ (y′) ≥ z)

f ′ (ω|ΨΦ (y′) ≥ z)
,

or, equivalently,

∂
∂ω

{Pr {ΨΦ (y′′) ≥ z|ω = ω}ϕ (ω)}
Pr {ΨΦ (y′′) ≥ z|ω = ω}ϕ (ω)

≥
∂
∂ω

{Pr {ΨΦ (y′) ≥ z|ω = ω}ϕ (ω)}
Pr {ΨΦ (y′) ≥ z|ω = ω}ϕ (ω)

.

Next, note that

∂
∂ω

{Pr {ΨΦ (y′′) ≥ z|ω = ω}ϕ (ω)}
Pr {ΨΦ (y′′) ≥ z|ω = ω}ϕ (ω)

=
∂
∂ω

(
1− F ′′ (Ψ−1

Φ (z) |ω
))

1− F ′′
(
Ψ−1

Φ (z) |ω
) +

d
dω
ϕ (ω)

ϕ (ω)
,

and similarly,

∂
∂ω

{Pr {ΨΦ (y′) ≥ z|ω = ω}ϕ (ω)}
Pr {ΨΦ (y′) ≥ z|ω = ω}ϕ (ω)

=
∂
∂ω

(
1− F ′ (Ψ−1

Φ (z) |ω
))

1− F ′
(
Ψ−1

Φ (z) |ω
) +

d
dω
ϕ (ω)

ϕ (ω)
,

Thus, we must have that, for all z ∈ [0, 1],

∂
∂ω

(
1− F ′′ (Ψ−1

Φ (z) |ω
))

1− F ′′
(
Ψ−1

Φ (z) |ω
) ≥

∂
∂ω

(
1− F ′ (Ψ−1

Φ (z) |ω
))

1− F ′
(
Ψ−1

Φ (z) |ω
) . (28)

Finally, suppose that for some mechanism characterized by D (·), ∂
∂D(ω)

ψF ′ [D] ≤ 0. From

(27), this is equivalent to having

ϕ (ω)

1− Φ (ω)
≤

∂
∂ω

(1− F ′ (D (ω) |ω))
1− F ′ (D (ω) |ω)

.

29See corollary 1 in Athey and Levin [2018].
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Inequality (28) then implies that necessarily ∂
∂D(ω)

ψF ′′ [D] ≤ 0. Further, note that, under

assumptions 2 and 3, for any experiment F̃ , the optimal mechanism D∗

(
·; F̃
)
is determined

by pointwise maximization. The result then follows from Milgrom and Shannon [1994].
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