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KEY FINDINGS

n The authors propose a methodology to address the common inconsistency that exists
between models used for long-term strategic asset allocation and investment risk
management.

n The authors show that it is possible to reflect long-term asset characteristics in simulated
scenarios generated by a risk system calibrated with short-term history, creating a better
alignment between risk and strategic asset allocation models.

n The methodology allows institutional investors to better use existing simulations from
their risk models for portfolio allocation, sensitivity analysis, stress testing, and other
portfolio applications.

ABSTRACT

For many institutional investors, there is a potential inconsistency between models used 
for long-term strategic asset allocation and investment risk management. Investment risk 
models, often calibrated with a shorter history spanning 5 to 15 years, could provide 
misleading results when used for strategic portfolio construction decisions, which usu-
ally consider longer-term asset characteristics spanning multiple business cycles. In this 
article, the authors propose a methodology to address this challenge. They show that it is 
possible to reflect long-term asset characteristics in simulated scenarios generated by a 
risk system calibrated with short-term history, creating a better alignment between risk and 
strategic asset allocation models. Their methodology allows institutional investors to better 
use existing simulations from their risk models for portfolio allocation, sensitivity analysis, 
stress testing, and other portfolio applications.

TOPICS

Portfolio construction, quantitative methods, simulations, risk management, perfor-
mance measurement*

Institutional investors with a long-term focus usually achieve their return objectives 
through a combination of strategic asset allocation and a value-added program. 
These investment decisions naturally involve making trade-offs between risks and 

returns. To properly manage the overall investment risk of a fund, sound risk man-
agement practices are established for both the strategic asset allocation (total risk) 
and the value-added program (active risk). In practice, usually a single system is used 
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to estimate and govern the investment risk of both activities. Modern risk manage-
ment systems face numerous constraints and requirements, with a key consideration 
being data availability. Because each position is prudently modeled in a risk system 
involving tens of thousands of financial securities, the modeling period is often 
restricted to short-term history (typically 5 to 15 years) because of the demanding 
data requirements. The situation is the opposite for strategic portfolio construction 
modeling. Long-term history (50 years or more, spanning multiple business cycles) 
is often needed to calibrate strategic portfolio construction models involving fewer 
securities. The aforementioned situation creates a potential inconsistency between 
strategic portfolio construction and risk management models.

To illustrate the economic significance of this inconsistency, let’s consider the 
empirical relationship between equity and fixed income. This pairwise correlation for 
the 2015–2020 period has been negative, resulting in considerable diversification 
benefits between these two asset classes. However, going back further in history 
(e.g., since 1950), the pairwise correlation has been close to zero. A straightforward 
implication of this correlation difference is that a risk-reducing asset allocation shift 
decided using short-term history could instead be risk-adding when analyzed using 
long-term history. The difference in modeling period between the risk and strategic 
portfolio construction models could adversely affect portfolio management decisions. 
The aim of this article is to propose a simple methodology on how a risk system, 
although calibrated with short-term history, can be leveraged appropriately to be more 
aligned with long-term strategic asset allocation. 

Our approach is inspired by the change of measure and importance sampling. 
We show that it is possible to simply reweight scenarios simulated by a risk system 
to reflect the different asset characteristics. The following provides a quick overview 
of the methodology. 

Given a set of simulated risk scenarios, several relevant factors are selected, and 
their simulated joint distribution is estimated. Next, the preferred joint distribution of 
these factors is determined by using a different modeling period or forward-looking 
views. Finally, the likelihood weights are computed using the preferred and simulated 
factor distributions and are applied to the scenarios, thus altering the probability 
distributions of all simulated asset returns. The altered joint distribution of simulated 
returns provides an alternative view on portfolio and factor statistics such as returns, 
volatility, expected shortfall, and so forth. 

We demonstrate the practicality of our methodology through three real-world 
examples related to investment and risk management applications, including portfolio 
what-if analysis on modeling assumptions and portfolio stress testing. The first 
example directly addresses the inconsistency raised earlier. We create a short-term 
risk model on 18 assets and define three factor portfolios. We apply our methodology 
to reflect a different joint distribution of the factors based on long-term history and 
demonstrate that we are able to reflect long-term asset characteristics on the sce-
narios generated by the short-term risk model. In the second example, we analyze the 
portfolio volatility impact under different equity–fixed income correlation assumptions. 
This is achieved by applying our methodology to reflect different equity–fixed income 
correlations and investigating the resulting likelihood-weighted portfolio volatilities. 
The results of this analysis can help investors determine the appropriate level of 
portfolio risk under different correlation assumptions. The third example illustrates 
the application of portfolio stress testing using simulated scenarios. In common prac-
tice, portfolio stress testing involves repricing a portfolio under user-defined market 
shocks. Using our methodology, we define these market shocks as target probabilities 
and use them to compute the likelihood weights. These weights are then applied to 
the risk scenarios to calculate stressed portfolio returns. 



The Journal of Portfolio Management | 3May 2021

Overall, we show using three examples that our methodology allows institutional 
investors to better use existing simulations from their risk models for portfolio alloca-
tion, sensitivity analysis, and stress testing with alternative or forward-looking views, 
thus bridging the gap between investment risk measurement and strategic allocation.

REVIEW OF PREVIOUS LITERATURE

This article contributes to the large literature on long-term asset allocation and 
investment risk management. Many important contributions have been made in the 
areas of optimal portfolio allocation, risk, and factors (see Markowitz 1952; Black 
and Litterman 1990; Qian 2011; Asness, Frazzini, and Pedersen 2012). However, 
practical issues arise during the implementation of these theories. First, strategic 
asset allocation using these approaches requires the models to be calibrated based 
on long-term history owing to investors’ strategic objectives and the notorious diffi-
culty in estimating expected returns and correlation through the cycle. Second, and 
more importantly, the assumptions made in the strategic asset allocation model are 
rarely aligned in practice with the assumptions made in the underlying risk system. 

To elaborate further, it is widely known that modern risk systems face regulatory, 
operational, and governance requirements as well as business demands such as 
system functionalities, product coverage, reporting, and processes (Gillespie and 
Curwood 2012). These demanding requirements make risk models different from 
strategic asset allocation models. For insurance companies and pension plans, 
asset–liability models are the primary tool for strategic asset allocation. However, 
for value-added programs, these institutions use modern risk systems to perform 
risk budgeting and monitoring (Franzen 2010). Our article contributes to this extant 
literature by proposing a methodology that could create a better alignment between 
modern risk management and strategic asset allocation when needed. 

The methodology we present is inspired by the change of measure and importance 
sampling. The change of measure is applied extensively to derivatives pricing; see 
Shreve (2004), Margrabe (1978), Geman, El Karoui, and Rochet (1995), Schroder 
(1999), and Benninga, Bjork, and Wiener (2001) for more details. As for importance 
sampling, it is typically used as a variance reduction technique in derivatives pric-
ing, portfolio risk modeling, and signal processing; see Glasserman (2003) for more 
details. Our approach builds on previous research and instead focuses on addressing 
an important challenge related to strategic asset allocation and risk management, 
which is novel in the extant literature. 

METHODOLOGY

Our methodology is centered on determining the multivariate likelihood ratio 
between the desired and simulated joint probability distribution of asset returns. We 
start this section by expressing the multivariate asset return distribution generated 
by a risk model as a copula and marginal distributions of risk factors. We simplify the 
expression using the law of conditional probability to separate out the few selected 
factors of interest. We then derive the likelihood ratio between the desired and sim-
ulated joint distribution on these factors. The section concludes by explaining the 
regularity conditions for likelihood ratios and showing its linkage to the change of 
measures. 
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Main Derivation

Let the underlying factors of a risk model follow a general class of multivariate 
distribution, denoted by p(x1, …, xn), with Z ≡ {x1, x2, …, xn} being a set of n risk factors. 
According to Sklar’s (1959) theorem, there must exist a unique copula that links the 
risk factor marginal distributions to create a joint probability distribution: 

∏… = Φ … Φ φ
=

p x x c x x xn n n
i

n

i i( , , ) ( ( ), , ( )) ( )1 1 1
1

(1)

where F(*) and f(*) are the cumulative and probability density functions of the 
individual risk factors, respectively; C(*) and c(*) are the cumulative and probability 
density functions of the copula, respectively. Let’s partition the n risk factors into 
two subsets, denoted by ZA and ZB, where Z = ZA ∪ ZB, ZA ≡ {x1, x2, x3, …, xm}, and ZB ≡ 
{xm+1, xm+2, xm+3, …, xn} with m < n. The multivariate distribution of all risk factors p(ZA, ZB)  
can be expressed as p(ZA, ZB) = p(ZB|ZA)p(ZA) using the law of conditional probability. 
This provides the ability to modify the selected marginal joint distribution and not the 
entire joint distribution. We denote ZA as the subset of risk factors we are interested 
in altering and ZB the subset of risk factors whose joint distribution conditional on ZA 
we want to preserve.

Let’s define the joint distribution of the risk factor scenarios as f(Z) and the 
desired target joint distribution as g(Z). The target distribution incorporates the risk 
factor characteristics based on user inputs (e.g., a different correlation matrix or asset 
volatilities). We can write the likelihood ratiolbetween the two distributions as follows: 
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Furthermore, we set the conditional probabilities to be the same under both 
measures; that is, pg(ZB|ZA) = pf(ZB|ZA). Under this assumption, the likelihood ratio 
can be approximated as
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where cp(*) is a parametric copula used to represent cg(*) and approximate cf(*); 
Q0 is the maximum likelihood estimated parameters of the copula under probability 
measure f; and Q1 is the target copula parameters defined under the new measure g. 
Equation 3 assumes the parametric copula is a good representation of the empirical 
copula such that Φ … Φ Φ … Φ Θ ≅c x x c x xf f

m
f

m
p f

m
f

m( ( ), , ( ))/ ( ( ), , ( )| ) 11 1 1 1 0  for all values  
of x. A full derivation is provided in online Appendix A.

Regularity Conditions, Likelihood Weights, and Effective Sample Size

Under the probability measure f(Z), we can define a likelihood function l(Z) = 
dP g(Z)/dPf(Z), which is also the Radon–Nikodym derivative of g with respect to f.  
For g to be a probability measure, the likelihood ratio l must be ≥0. Furthermore, the 
probability measure g must be absolute continuous with respect to the measure f. 
From a numerical standpoint, we need the absolute continuity to hold. This means 
the scenario generated under distribution f must be extensive enough to be sampled 
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from the new distribution g for our approach to work desirably. In a discrete setting, 
we can express the likelihood weight w(ZA) for scenario j as follows: 
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where S is the total number of scenarios, 0 ≤ j ≤ S, ≥w ZA j( ) 0 with Σ =w Zj
S

A j( ) 1. Notice 
that the likelihood ratio is only a function of the scenario index j, which means the 
same weight value is applied to all asset and factor returns for each scenario. These 
weights are akin to the likelihood weights originally proposed in Tim Hesterberg’s 
(1988) thesis. Detailed derivation of this section is provided in online Appendix B.

Reweighting a set of scenarios is analogous to using only a subset but repeated 
scenarios; thus, we can expect information loss as the number of “effective” samples 
decreases. To assess the amount of information that is retained, we calculate the 
effective sample size (ESS) derived by Kish (1965). ESS is defined as
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EMPIRICAL ANALYSIS

In this section, we outline in detail the first example briefly mentioned in the 
introduction. The motivation of this example is to demonstrate the relevance of 
our methodology in a real-world application. We create a straightforward risk model 
calibrated with recent history to generate simulated scenarios of asset returns. We 
apply our methodology to alter the joint distribution of these asset return scenarios 
to reflect the asset characteristics over a longer history. To assess the effectiveness 
of the methodology, we recalibrate the risk model with a longer history to serve as a 
benchmark for comparisons. We then compare and evaluate portfolio metrics such as 
risk contribution and asset-to-portfolio correlations between the weighted scenarios 
and the benchmark scenarios.

Portfolio Setup and Implementation

We source data from Global Financial Data and Bloomberg. The list of indices 
and the details of data preparation are provided in online Appendix C. The dataset 
includes seven equity (EQ) indices (Australia [AU], Canada [CA], France [FR], Germany 
[DE], the United Kingdom [UK], Japan [JP], and the United States [US]), seven fixed 
income (FI) indices (Australia [AU], Canada [CA], France [FR], Germany [DE], the 
United Kingdom [UK], Japan [JP], and the United States [US]), US Corporate Credit 
(CORP-US), and three commodity (COM) indices (energy [EN], agriculture [ARG], and 
precious metals [PM]).

For our example risk model, we apply the stationary bootstrap algorithm by Politis 
and Romano (1994) on the historical returns. We simulate two sets of 10,000 asset 
return scenarios using data from January 2004 to December 2018 (representing 
a short-term risk model) and from February 1971 to December 2018 (representing 
the long-term benchmark model). The benchmark model, although feasible in this 
demonstration, is impractical for an actual investment risk system because of a 
lack of data for most securities dating back to 1971. The simulated scenarios are 
demeaned before comparison analysis is performed.
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In this example, we introduce three systematic factor portfolios (equity, fixed 
income, and inflation) and a hypothetical portfolio. The equity, fixed income, and infla-
tion factors are built from the seven country equity indices, the seven country fixed 
income indices, and the three commodity indices, respectively. We are interested in 
testing the impact of factor composition; therefore, we create two factor sets. The 
detailed asset weights of each factor set are listed in online Appendix Exhibit C2. In 
a quick summary, factor set 1 is constructed with equal weights within each asset 
class, whereas factor set 2 uses our test portfolio sub-asset class weights. The 
weights of the hypothetical portfolio are shown in Exhibit 1. 

After the risk simulation, we calculate the factor scenarios based on the asset 
weights of these factor portfolios. We then calculate the marginal probability densities 
of the short-term ff and long-term fg factor scenarios using a normal kernel density 
estimator. To compute the short-term cf and long-term cg copula densities, we use 

EXHIBIT 1
Comparisons of Asset and Portfolio Risk Statistics between the Short- and Long-Term Risk Scenarios 
and Likelihood Weighted Scenarios

NOTES: The exhibit reports key risk metrics and statistics for four different risk simulations. Sim A and Sim B are scenarios (equal 
weights) based on the short- (2004–2018) and long-term (1971–2018) risk models, whereas Sim C and Sim D are scenarios from the 
short-term risk model weighted based on our methodology incorporating the long-term characteristics of factor portfolios m1 and m2 
defined in the online Appendix, Exhibit C2. 1% ES denotes the 1% portfolio expected shortfall, 1% ES Contr. is the portfolio expected 
shortfall contribution from each asset, rp is the correlation between the portfolio and each asset, and ESS % is the effective sample 
size in percentage for Sim C and Sim D. The table shows that the metrics from Sim C and Sim D are close in most aspects to Sim B. 
This demonstrates the effectiveness of our methodology.

[Sim A]
Original

Short Term:
2004–2018

[Sim B]
Target

Long Term:
1971–2018

[Sim C]
Weighted

Short Term:
2004–2018

[Sim D]
Weighted

Short Term:
2004–2018

Equal Weights Equal Weights
Weighted by

Factor Set [m1]
Weighted by

Factor Set [m2]

1% ES –24.0 –22.2 –22.2 –21.7
ESS % 50.5 48.7

Asset ID

EQ-AU
EQ-CA
EQ-FR
EQ-DE
EQ-UK
EQ-JP
EQ-US
FI-AU
FI-CA
FI-FR
FI-DE
FI-UK
FI-JP
FI-US
CORP-US
COM-EN
COM-ARG
COM-PM

Portfolio
Weight (%)

3.2
3.2
3.2
3.2
3.2
4.0

20.0
4.0
4.0
4.0
4.0
8.0
4.0

12.0
5.0
5.0
5.0
5.0

1% ES
Contr.

5.7
6.3
6.0
6.7
5.1
8.2

38.3
–1.5
–0.2
–0.5
–0.8
–1.3
–0.1
–2.1
2.0

16.9
7.6
3.6

ρP
81.5
86.8
78.0
78.6
85.8
59.2
87.7

–24.5
–4.1
–0.4

–13.5
–5.7
–1.5
–8.7
50.6
58.5
49.8
32.4

1% ES
Contr.

6.2
6.3
6.2
5.6
5.7
6.3

37.3
0.0
0.8
0.3
0.1
1.0
0.4
0.9
2.1

10.8
5.2
4.6

ρP
69.0
81.0
66.2
60.1
66.1
51.7
84.3
19.5
34.4
26.4
22.6
25.5
22.0
22.7
47.1
28.1
29.7
28.3

1% ES
Contr.

5.2
5.5
5.3
6.0
4.9
7.0

34.4
–0.2
0.8
0.6
0.2
1.3
0.3
2.5
3.0

12.0
6.6
4.7

ρP
78.7
83.4
73.9
75.3
83.9
52.4
84.9
10.7
29.0
33.5
22.7
30.2
22.1
26.2
65.0
33.7
35.8
30.0

1% ES
Contr.

5.1
5.4
5.3
6.0
4.9
7.0

34.4
–0.2
0.8
0.6
0.3
1.4
0.3
2.8
3.0

11.7
6.6
4.7

78.1
82.1
73.9
75.6
83.8
51.8
85.3
12.1
30.0
34.2
24.0
32.3
22.6
28.5
65.1
30.5
34.5
27.5

ρP
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the Student’s t-copula as a proxy copula and estimate its parameters via maximum 
likelihood estimation. With these marginal and copula densities, we compute the 
likelihood weights. In practice, if we know the risk system uses the Gaussian copula, 
then it could be used for cf and cg; otherwise, a Student’s t-copula would provide more 
flexibility in fitting the empirical copula of the simulation.

Discussion of Results

In this section, we present our results and the key findings that relate to the first 
example described previously. There are four test cases for comparison: simulation 
from the short- (Sim A) and long-term (Sim B) risk models and the weighted simulations 
from the short-term risk model with likelihood weights computed with factor set m1 
(Sim C) and m2 (Sim D), respectively. Exhibits 1 and 2 report the portfolio weights, 
the 1% expected shortfall (ES), asset–portfolio correlation, and the portfolio expected 
shortfall. See online Appendix D for further details on why we choose to demonstrate 
the usefulness of our methodology by focusing on the asset–portfolio correlation.

There are several important observations in Exhibits 1 and 2. Note that Sim A 
and Sim B show different portfolio risk profiles. Examining them in Exhibit 1 shows 
that the role of fixed-income assets is different for this hypothetical portfolio. Based 
on the short-term model, fixed-income assets offer great diversification benefit, as 
suggested by the zero to slightly negative risk contributions. However, the long-term 
model suggests fixed-income assets offer comparatively less diversification benefit, 
as shown by the significantly higher asset–portfolio correlation. Observing Sim C and 
Sim D compared to Sim B (the benchmark) reveals encouraging results on the perfor-
mance of our methodology. The asset–portfolio correlations of fixed-income assets 
are similar among Sim B, Sim C, and Sim D but not Sim A. The 1% expected shortfall 
contribution and the asset–portfolio correlations are reasonably close among Sims B, 
C, and D for most assets. Examining Exhibit 2 on the factor correlations corroborates 
these conclusions. This finding supports the notion that the weighted risk scenarios 

EXHIBIT 2
Factor Correlations between the Short- and Long-Term Risk Scenarios and Likelihood Weighted Scenarios

NOTES: The exhibit reports the pairwise factor (F1, F2, and F3) correlations (in percent) and the factor correlations to the portfolio (P) for 
factor sets m1 and m2 on four different risk simulations. Sim A and Sim B are scenarios (equal weights) based on the short- (2004–
2018) and long-term (1971–2018) risk models, whereas Sim C and Sim D are scenarios from the short-term risk model weighted based 
on our methodology incorporating the long-term characteristics of factor portfolios m1 and m2 defined in online Appendix Exhibit C2.

Factor Set

m1

m2

F1

F2

F3

P

F1

F2

F3

P

[Sim A]
Original

Short Term:
2004–2018

[Sim B]
Target

Long Term:
1971–2018

[Sim C]
Weighted

Short Term:
2004–2018

[Sim D]
Weighted

Short Term:
2004–2018

Equal Weights Equal Weights
Weighted by

Factor Set [m1]
Weighted by

Factor Set [m2]

F1

–3.0
9.0

83.8

PF2

–19.6
27.9

F3

43.5

PF1

–41.3
43.0
87.1

–41.2
43.5
88.9

F2

–29.4
–10.4

26.1
–9.6

F3

67.3

67.2

PF1

2.6
11.0
84.7

3.4
9.1

87.7

F2

–22.7
33.6

–22.3
32.3

F3

38.0

38.0

F1

–1.7
7.4

85.9

F2

–17.7
30.1

F3

40.3

P
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could be used for long-term asset analysis, including potentially complementing exist-
ing strategic asset allocation models. This could be particularly important when asset 
allocation decisions involve assets with different relationships at different points in 
history, such as equity and fixed income. Finally, if Sim B is indeed the desired sim-
ulation for long-term asset allocation and portfolio analysis, then a surrogate of Sim 
B could be obtained by applying our methodology to Sim A.

Other Considerations

So far, we have discussed how we can reweight the simulated scenarios using 
a set of systematic factors. When implementing our methodology, it is important 
to choose factors that explain a good portion of the portfolio risk. Factors that do 
not explain the portfolio risk sufficiently will not yield meaningful results. See online 
Appendix E for further details on the importance of factor choices in our methodology. 

To demonstrate the statistical validity of our methodology, we conduct a set of 
controlled experiments. We show that our methodology works well in altering the 
marginal and codependence structure of a known distribution family for a range of 
parameters. We choose the Student’s t-distribution and the Student’s t-copula to 
perform the experiment because they can generate a range of tail distributions and 
dependencies, including the Gaussian case when the degree of freedom is large. 
These tests demonstrate that when the properties of the Radon–Nikodym theorem 
are satisfied, the joint distribution of the weighted scenarios is consistent with the 
target probability measure. To save space, the controlled experiments are reported 
in online Appendix F and corresponding online Appendix Exhibits F1 to F5. 

OTHER APPLICATIONS

In this section, we discuss the portfolio sensitivity analysis and stress testing 
applications briefly mentioned in the introduction. These two examples are inspired 
by the desire of many investment managers to perform what-if portfolio analysis on 
different market conditions and model assumptions.

Portfolio Sensitivity Analysis

This example demonstrates an application to quantify the impact to portfolio 
volatility under different equity–fixed income factor correlation assumptions. Exhibit 3 
plots the portfolio volatility from Sim A of Exhibit 1 with varying degrees of correlation 
between the equity and fixed income factors. The portfolio volatility is calculated 
from the weighted risk scenarios after our methodology is applied to alter the factor 
correlations. As shown in Exhibit 3, the portfolio volatility changes by 0.6% and 1.0% 
if the equity–fixed income factor correlation changes from -41% to 0% and 40%, 
respectively. The key finding is that the risk of a balanced portfolio estimated using 
recent history could be too low because of the significant negative equity–fixed income 
factor correlation assumed in the model. This type of application opens up a contin-
uum of possibilities for more analysis regarding the sensitivity of different modeling 
assumptions to asset allocation and risk measurement.

Stress Testing

This practical example relates to portfolio stress testing. Using our methodology, 
we calculate the likelihood weights based on a few selected factors or assets that 
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are put under stress. For each scenario j, we design the target distribution and write 
the likelihood ratio as 

∏
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− µ
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where N(*) is the standard Gaussian density function. For each factor or asset i, xi,j is 
the jth simulated return scenario, mi is the target stress return, and si is the sample 
volatility across scenarios. We assume uncorrelated target marginal distributions, 
which results in the removal of the term Φ … Φ Θc x xp g

m
g

m( ( ), , ( )| )1 1 1  in Equation 3. a is a 
positive scaling parameter on the standard deviation and is set to be W -0.5. We prefer 
W ≈ ESS and call the resulting a optimal because as can be subsequently viewed as 
the standard error that is consistent with ESS. After computing the likelihood weights, 
we calculate the weighted average returns of all factors and assets as they represent 
the conditional average returns under the specified stress market event.

To conduct the stress test, 50,000 asset return scenarios are generated by 
configuring the long-term risk model to simulate two-year returns instead of one. 
The two-year risk horizon allows the risk model to generate more extreme returns to 
respect the absolute continuity condition when our methodology is applied. Exhibit 4 
reports the results for the four stress cases with the conditional average returns for 
each asset, factor, and the portfolio, alongside the effective sampling size, optimal 
a, and mean squared error between the target stress returns and conditional average 
returns. We use the hypothetical portfolio in Exhibit 1 and the m1 factor definition. 
The first two cases involve stressing the factors, whereas the last two cases involve 
stressing two selected assets. A quick observation from Exhibit 4 shows that the 
target stress return and the subsequent weighted average return on the same factor 
or asset in the simulation are similar, as expected. This suggests that our methodol-
ogy can successfully zoom in to a region within the simulated return distribution that 
centered on the desired target stress values.

The first case involves the equity, fixed income, and inflation factor shocks of 
-50%, 10%, and -30%, respectively. This scenario can be interpreted as a severe
recession. As expected, most equity and inflation assets suffer large losses, leading

EXHIBIT 3
Portfolio Volatility as a Function of Equity–Fixed Income Correlation

NOTES: Based on the setup from the Empirical Analysis section, this graph shows the expected portfolio volatility for varying F1 - F2  
(equity–fixed income) factor correlation from -50% to +50%. The diamond denotes the model portfolio volatility from Sim A of 
Exhibit 1, with an F1 - F2 correlation of -41%. The triangle and the square denote the model portfolio volatility with the F1 - F2 correla-
tion changed to 0% and +40%, respectively.
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to a portfolio loss of 19.23%. The second case involves modest equity and inflation 
factor shocks of 20% each. This contributes to positive returns to equity and inflation 
assets, generating a portfolio gain of 8.88%. The negative fixed-income asset returns 
are understandable because a high inflation shock coupled with positive equity returns 
is likely disadvantageous for fixed-income assets. The third case involves S&P 500 
and US 10-year Treasury shocks of -40% and 10%, respectively. This case could rep-
resent a US recession scenario. Our aim is to examine how this affects other foreign 
markets. Equities globally look to be severely affected, but foreign fixed incomes are 
less so. This may suggest that, with historical data, the impact of US monetary policy 
tightening or easing may not systematically affect foreign fixed income. The fourth 
and final case involves energy commodity and precious metal price shocks of -60% 
and 20%, respectively. These two-sided commodity shocks on inflationary assets 
create a dilemma because financial asset prices could rise or fall depending on the 
reasons for these inflation shocks. As a result, both the equity and fixed-income 

EXHIBIT 4
Portfolio Stress Testing

NOTES: Values in square brackets denote asset/factor scenarios that are used to compute the likelihood weights as per our method-
ology. Based on these weights, the weighted average (conditional) asset returns and the weighted average portfolio return are com-
puted. The simulation consists of 50,000 scenarios over a two-year risk horizon. EQ F, FI F, and INF F denote the three factors (F1, F2, 
and F3) defined in factor set m1. EQUS, FIUS10, GSCIEN, and GSCIPre are defined in online Appendix Exhibit C1. We report the mean 
squared error (MSE) between the target stress returns and conditional average returns after reweighting as well as the effective  
sampling size (ESS) and the optimal a.

Cases for Market Stress Scenarios with Target Stress Returns

EQ-AU

Assets

EQ-CA
EQ-FR
EQ-DE
EQ-UK
EQ-JP
EQ-US
FI-AU
FI-CA
FI-FR
FI-DE
FI-UK
FI-JP
FI-US10
CORP-US
COM-EN
COM-ARG
COM-PM
EQ F
FI F
INF F

Portfolio
ESS
MSE
Optimal α

EQ F: –50%
FI F: 10%

INF F: –30%

–50.52%
–50.54%
–57.03%
–60.57%
–42.35%
–47.85%
–44.36%

8.18%
9.32%
8.65%

10.60%
12.57%

4.17%
15.63%

1.29%
–51.92%
–36.59%

–4.93%
[–50.46%]

[9.88%]
[–31.35%]

–19.23%
23

0.00687%
0.22

EQ F: 20%
INF F: 20%

21.03%
20.22%
20.92%
20.27%
18.56%
19.61%
18.92%
–4.50%
–5.32%
–3.91%
–3.29%
–3.21%
–3.34%
–6.74%
–0.10%
34.90%

6.19%
18.26%
[19.93%]
–4.33%

[19.93%]

8.88%
239
0.00004%
0.06

EQUS: –40%
FIUS10: 10%

–41.24%
–41.43%
–42.02%
–46.33%
–33.28%
–32.77%

[–40.17%]
1.03%
3.76%
2.82%
4.63%
5.42%
0.25%

[9.96%]
2.23%

–24.33%
–17.38%

–2.44%
–39.61%

3.98%
–14.81%

–15.85%
87

0.00015%
0.11

GSCIEN: –60%
GSCIPre: 20%

–1.25%
–3.41%
1.44%

–3.41%
1.90%

–3.40%
2.00%
0.72%
0.83%
1.99%
1.25%
0.19%

–1.21%
2.88%
2.28%

[–59.75%]
–17.47%
[19.92%]
–0.88%
0.95%

–19.51%

–2.13%
149

0.00034%
0.09

Portfolio
Weight %

3.2
3.2
3.2
3.2
3.2
4.0

20.0
4.0
4.0
4.0
4.0
8.0
4.0

12.0
5.0
5.0
5.0
5.0

m1 – F1

m1 – F2

m1 – F3
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factors on average produce near zero conditional returns. In reality, the outcome for 
equity returns would likely be significantly positive or negative. If practitioners have 
a view on whether this is a supply-side or demand-side shock, they should impose 
their views of the anticipated equity shocks in our methodology to produce more 
meaningful results.

CONCLUSION

In this article, we address the potential misalignment created by models used for 
strategic portfolio construction and investment risk management due to differences 
in assumed asset characteristics. We propose a methodology inspired by change of 
measure and importance sampling techniques. The method can be applied to alter 
the simulated scenarios generated by an investment risk system calibrated with short-
term history to ones that reflect longer-term asset characteristics. Our methodology 
thus enables better consistency between models used for investment and those used 
in risk management. Because of its ease of usability, the likelihood weighting scheme 
could motivate institutional managers to investigate the use of a single system for 
both investment and risk decision making. Attention could be shifted to improving the 
quality and range of scenarios generated from existing systems instead of aiming to 
implement new ones. Furthermore, we show that this framework has potential appli-
cations related to other types of portfolio analysis, such as sensitivity analysis and 
stress testing. Finally, given the rise of high-performance computing and processing 
capabilities, we argue that our method would be more effective and applicable for a 
larger set of investment and risk applications in the future. 
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