

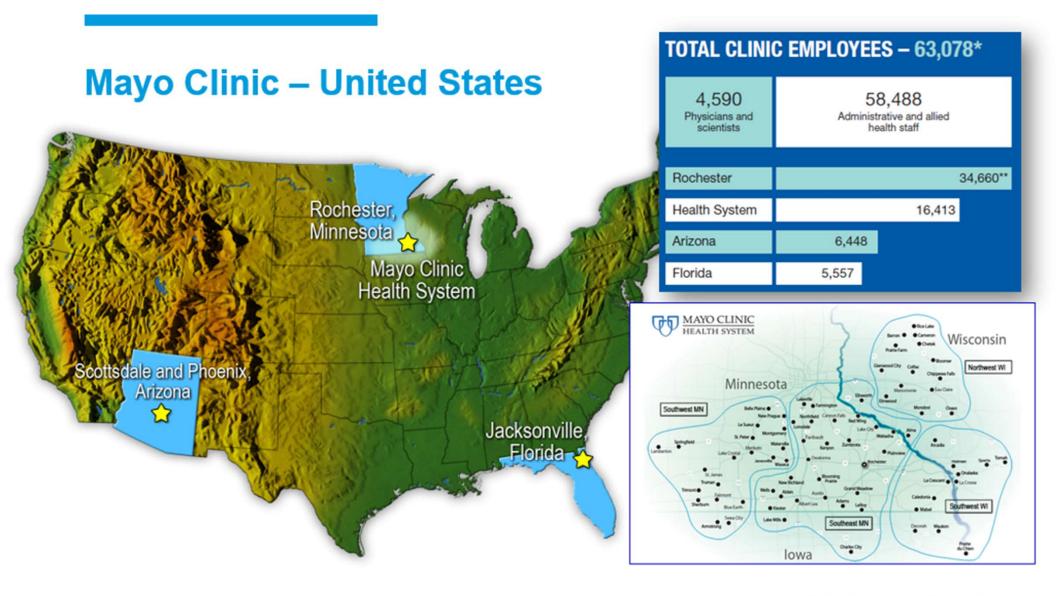
Applied Artificial Intelligence at Mayo Clinic

Atul Dhanorker, Adam Resnick Mayo Clinic

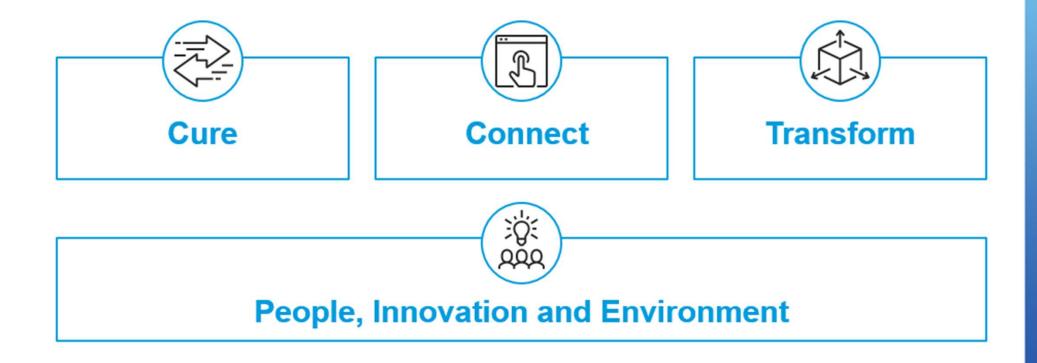
5th Annual Research Roundtable: Data Analytics in Healthcare March 22, 2022

Presentation Outline

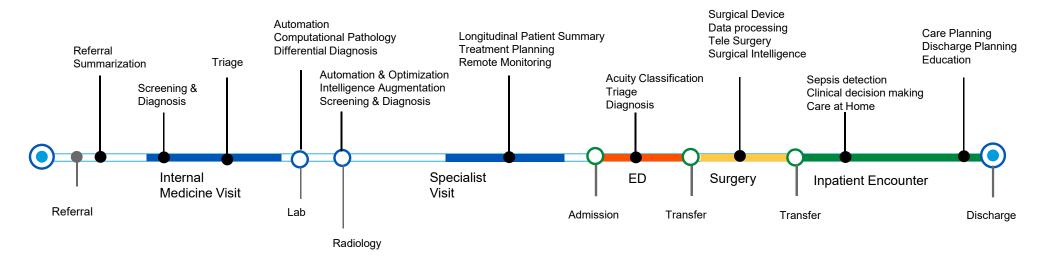
- The Opportunity Space
- Artificial Intelligence (AI) Capability
- Case Study I: Emergency Department Transfer
- Case Study 2: Breast Cancer Risk Prediction
- Discussion



2030 Bold. Forward. Strategic Plan



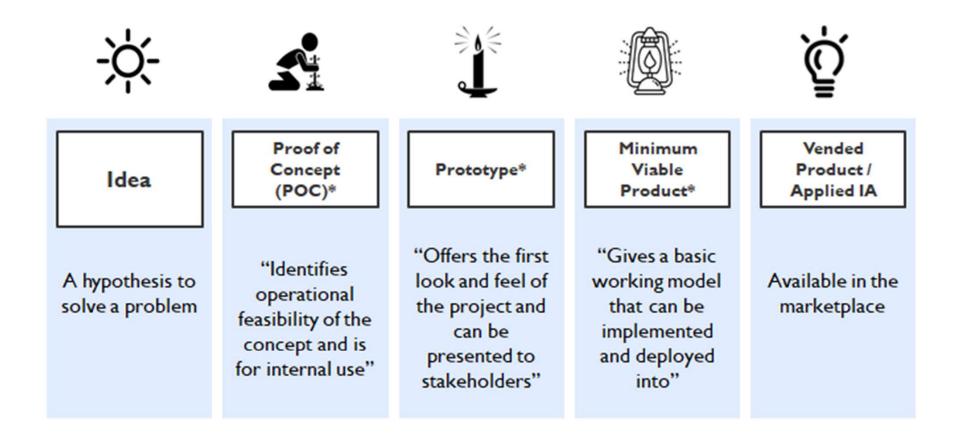
Patient Journey Map and AI Impact



Al impact

Patient Journey

Capability Model: Ideas Based on Maturity



* Definitions for Proof of Concept, Prototype and Minimum Viable Product were sourced from Hacker Noon, a hub for technologists and Software Developers

Pillars of Clinical AI

Platform

Strategic Alignment

Patient & Provider Experience

Ethics, Privacy, Education User Experience

Financial Business Planning, ROI Commercialization

Sustainability

Model Update Practice Optimization Process & Outcomes Metrics

Vision, Strat

Application

Change Management Education & Training Integration with Practice Maintenance

Governance

Vision, Strategy, Decision-Making

Organization & Functions

Structure, Roles, Responsibilities

Discovery

Data Architecture, Curation, Representation & Segmentation, Algorithm Development

Translation

Validation & Usability Testing Orchestration Engine Clinical Simulation

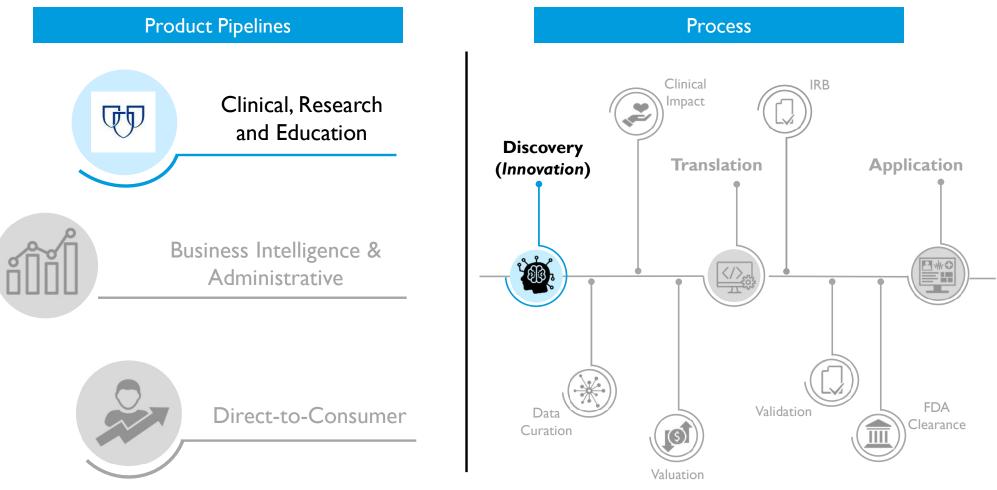
Regulatory

Quality Management System FDA Clearance Ownership of Intellectual Property Ownership of Risk

62020 Mayo Foundation for Middoal Education and Research | silde-9

Case Studies

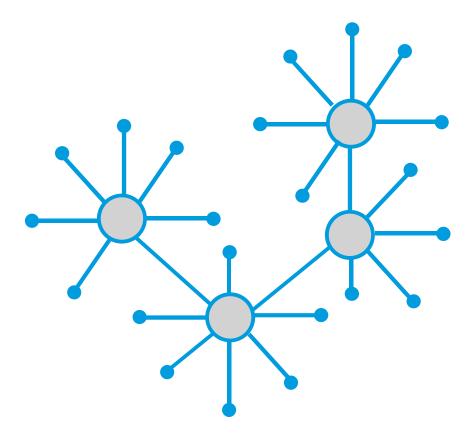
Emergency Department Case Study



^{©2020} Mayo Foundation for Medical Education and Research | slide-9

Mayo Clinic Midwest

- Hub-and-spoke model
 - "Hubs" can manage complex patients
 - "Spokes" have fewer resources
- Goals:
 - Manage patients locally as much as possible
 - Reduce unnecessary healthcare utilization



Purpose

Objective

To leverage machine learning to **predict which patients would require hospital transfer** to enable early preventative intervention

Benefits

- Earlier readiness of hospital transport
- Ability to intervene with telemedicine to prevent transfer
- Enable research to better understand trends in patient transfers

Purpose

Identify Telemedicine Candidates

Approach

- Vital signs
- Diagnosis
- Orders
- Medications
- Used data from 160,000 patients treated between July 2017-October 2020 from non-hub Mayo Midwestern sites

Results

	Model Type	Accuracy	Percent of Flagged Patients Who Were Truly Transferred	Percent of Transferred Patients Who Were Flagged
Full Visit Data	Neural Network	95.5%	77.4%	63.4%
Data at Triage	Neural Network	9 2%	68.8%	8.1%

Null model: 92% accuracy

Conclusions

- It is possible to accurately predict ED transfers using machine learning
- Model accuracy is less clear with data only available at triage

Implementation

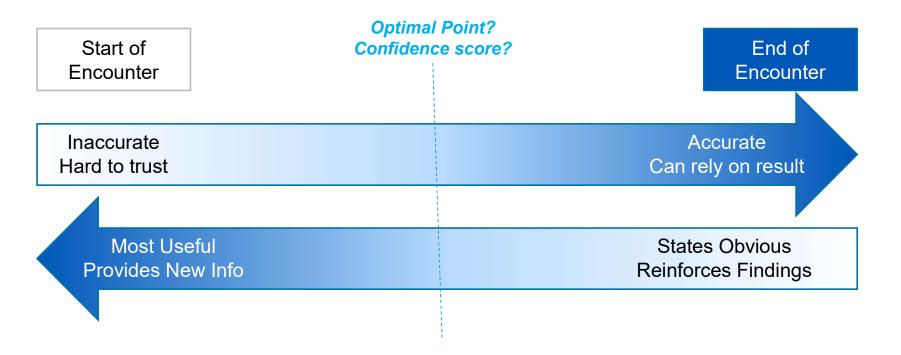
- The model use case must be refined for further development
- Minimum acceptable predictive performance must be established
- Incorporation into clinical workflows must be considered

Items for Further Study

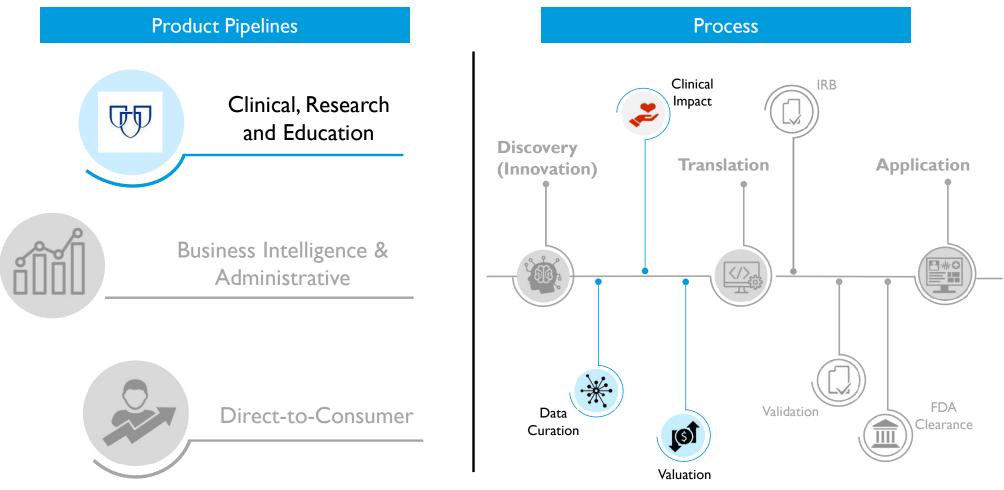
- The use of additional predictive variables may improve accuracy
- Other criteria for optimization may better meet the model use case

Possible Follow-Up Research Question

• At which point of the patient journey is input from a model-based risk score most valuable?



Automation of Breast Cancer Risk Assessment Case Study



Background

Risk Assessment

- Tyrer-Cuzick model calculates patient's 10 year and lifetime risk of developing breast cancer
- It uses demographic, family history, radiology, breast biopsy, genetic etc data to calculate the risk

Point of Care use Challenges

- Physicians are spending 30-35% of their time documenting and retrieving information with EHR
- Data is scattered throughout electronic health record(EHR)
- Most of the data elements are stored in unstructured clinical notes.

Patient and Physician satisfaction

- Physician EHR usage present a challenge in developing meaningful relationship with patient
- Physician are under increasing time pressure resulting in stress and burnouts

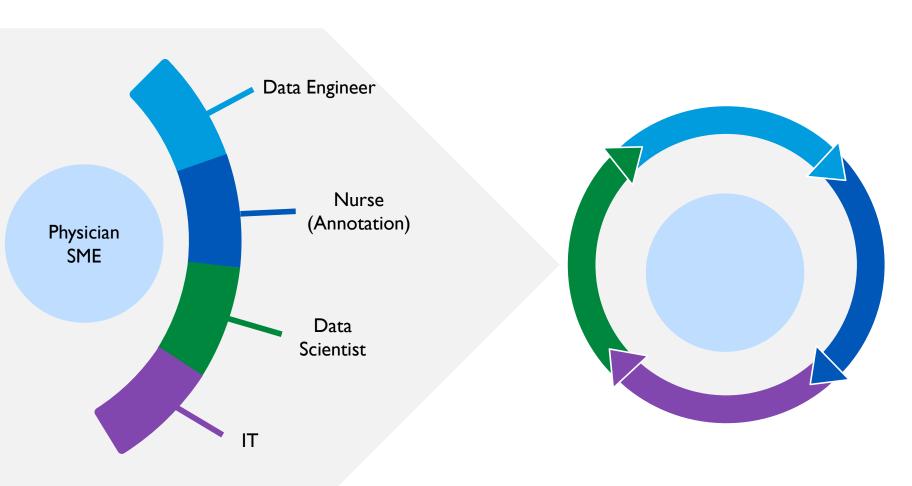
Purpose

Objective

To leverage NLP and deep learning to **extract structured and unstructured data** element needed to prepopulate the TC risk prediction model

Benefits

- Improve patient provider interaction
- Reduce cognitive burden and stress
- Human in the loop design to enable physician to modify the data elements



Team

Challenges

Data

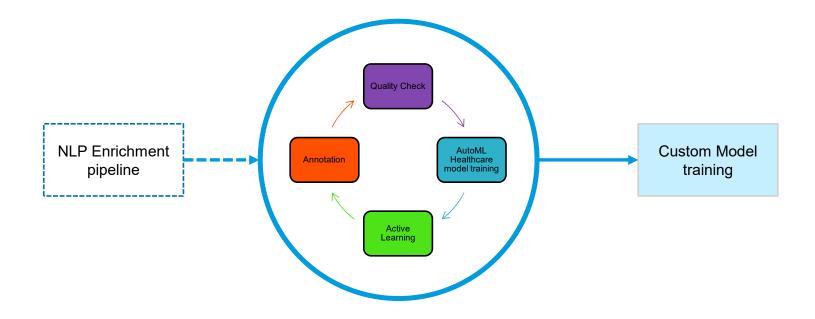
- 70% of data element present in clinical notes.
- Complex inclusion and exclusion criteria.
- Need specialized trained nurses for annotation.
- 80% of project effort in annotation.
- Coverage of data elements.

Process Engineering

- Human in loop design: augment not automate the physician's workflow.
- Ethical, technical and quality standards

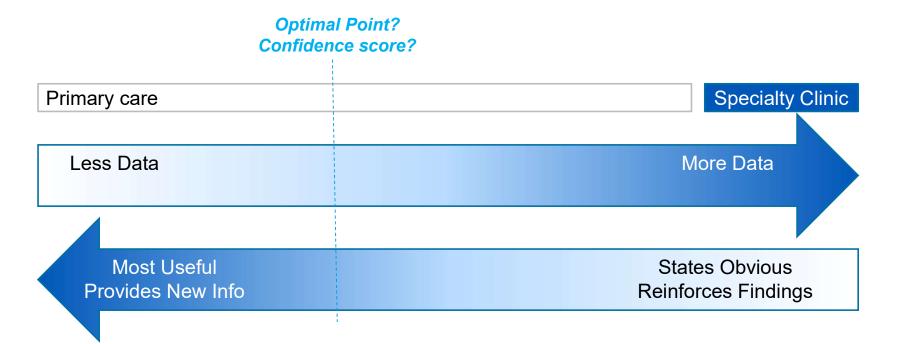
Agile Translation and Collaboration

• Technical collaboration between team members with different domain expertise



Possible Follow-Up Research Question

• At which point of the patient journey is input from Risk model most valuable?



Discussion

