

Waiting Experience in Open-Shop Service Networks: Improvements via Flow Analytics & Automation

Manlu Chen, School of Business, Renmin University of China

Joint work with

Opher Baron, Rotman School of Management, University of Toronto
Avishai Mandelbaum, Faculty of IE&M, Technion---Israel Institute of Technology
Jianfu Wang, College of Business, City University of Hong Kong
Galit B. Yom-Tov, Faculty of IE&M, Technion---Israel Institute of Technology
Nadir Arber, Integrated Cancer Prevention Center, Tel-Aviv Souraski Medical Center

Open-Shop Service Network

Clinic's Open-Shop Service Network

RENMIN

Expert in Chinese Management

Background: IT Upgrade

- Automated Customer Routing System (ACRS)
 - o Only for EHS male customers
- SMS-Based Customer Paging System (SCPS)
 - Routing message: when customers are routed to next stations
 - Calling message: when servers call customers to examination rooms

Research Questions:

- To understand the (potential) operational benefits and drawbacks of IT in open-shop networks
- To explore how the clinic's new IT capabilities can improve customers' waiting experience

Outline

Literature Review

- Priority and Routing Policies in Networks
 - **Priority Policy**: Pinedo (2016), Hall (2012), ...
 - **Routing Policy**: Averbakh et al. (2006), Chou and Lin (2017), Baron et al. (2017).
 - Self-Interested Routing: Arlotto et al. (2018).
- Performance of Multi-Stage Services
 - **Peak-End Rule**: Varey and Kahneman (1992), Fredrickson and Kahneman (1993).
 - Multi-Stage Services: Lee et al. (2012), Tong et al. (2016), Dixon and Thompson (2016), Das Gupta et al. (2016), …
 - **Open-Shop System**: Shtrichman et al.(2001), Baron et al. (2014, 2017).
- **IT and Healthcare Operations**: Bhargava and Mishra (2014), Lu et al. (2018), Westphal et al. (2020), ...
- Buffer Strategies: Mandelbaum and Reiman (1998), Song et al. (2015), ...

Impact of IT on Macro-Level Waits

Observation 1. (Impact of ACRS on Macro-Level Wait)

The ACRS redistributes the wait among wait-for-routing and wait-for-server times but *does not shorten* the total wait.

Wait-for-routing	Wait-for-servers	
Wait-for-routing		Wait-for-servers

Observation 2. (Impact of SCPS on Macro-Level Wait)

The SCPS reduced calling frequencies and call times, but the reduction had *negligible impact* on improving waits.

Impact of ACRS – Descriptive Statistics

Table 1. Descriptive Statistics of Male EHS Customers in Manually- and Auto-Routed Days

	System time (minutes)											
Days	Wait-for-routing		Wait-for	-server	r Call		Service		Break		Total	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
Manual routing	12.89	10.05	101.55	35.95	3.54	4.04	68.18	14.69	2.22	8.29	188.38	41.20
Automated routing	5.07	6.02	107.45	36.78	4.17	5.29	66.71	15.52	1.34	5.65	184.75	39.96
	\smile		\bigcirc									

Impact of ACRS – DID Analysis

	Mode	el 1	Mode	el 2	Mode	13		
Dependent variable:	Routing	$_{\rm gWT}$	Servers	sWT	TotalW	VТ		
Auto	4.211***	(1.323)	-8.999**	(3.584)	-4.587	(3.754)		
Gender	0.112	(1.283)	-22.375***	(4.326)	-21.129***	(4.531)		
Auto×Gender	-11.906***	(1.501)	9.006**	(4.082)	-1.547	(4.276)		
 No. of stations	1.189	(0.413)	4.074	(1.399)	5.293	(1.466)		
Workload	0.214***	(0.064)	-0.314*	(0.176)	-0.050	(0.184)		
Queue length								0
Blood test			2.016^{***}	(0.364)	1.851***	(0.381)	•	U
Breast surgeon			5.409***	(0.872)	5.611***	(0.913)		a
Cardiac stress test			5.881***	(0.323)	5.990***	(0.338)		_
Cardiologist			-0.589	(5.929)	-1.636	(6.211)	•	T
Gynecologist			4.516***	(0.948)	5.233***	(0.993)		C
Hearing test			5.249^{***}	(0.477)	4.685***	(0.500)	•	C
Nutritionist			26.215***	(9.314)	27.665***	(9.756)		
Ophthalmologist			3.583***	(0.353)	3.163***	(0.370)		
Ophthalmology			2.141***	(0.395)	1.696***	(0.414)	•	IV
Physician 1			4.302***	(0.384)	4.091***	(0.402)		A
Physician 2			0.676	(2.878)	-1.171	(3.015)		
Questioning			1.707	(1.538)	0.830	(1.611)	•	M
Review with cardiologist			4.578^{*}	(2.503)	4.902	(2.622)		1
Spirometry			4.500***	(0.510)	3.721***	(0.534)		А
Urologist			-0.088	(6.798)	-0.098	(7.121)	•	Μ
No. of servers (multi-servers	stations)			· · · · ·				h
Blood test			4.466***	(1.404)	4.961 ***	(1.471)		D
Cardiac stress test			-3.884***	(1.002)	-4.460***	(1.050)		
Physician 1			-0.526	(0.973)	-1.540	(1.019)		
Review with cardiologist			3.082	(2.058)	2.873	(2.156)		
Observations	749	2	749	2` ′	742			
Adjusted R ²	0.26	34	0.69	96	0.685	5		

• **Treatment** group: male EHS customers

RENMIN

Expert in Chinese

Managemen

- **Control** group: female EHS customers
- Model 1: negative correlation between Auto × Gender and wait-for-routing time
- Model 2: *positive* correlation between *Auto* × *Gender* and wait-for-servers time
- Model 3: no significant correlation between Auto × Gender and total wait

Notes. Standard errors are reported in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

Impact of SCPS- Station Performance

Table 2. Impact of the SCPS on Number of Calls and Call Time per Customer at Stations

	Number of calls per customer					Call time per customer						
	Year	2016	Year 2019		p-value	Year 2016		Year 2019		% change	p-value	
	Mean	Std	Mean	Std	\frown	Mean Std Mean		Std	in call time	\land		
Blood test	2.26	1.83	1.45	1.02	10.001	00:30	01:22	00:14	00:42	-52.55%	40.001	
Breast surgeon	1.86	1.38	1.25	0.73	<0.001	00:35	01:51	00:28	02:02	-19.41%	0.316	
Cardiac stress test	2.62	2.25	1.76	1.46	<0.001	00:48	01:44	00:36	01:30	-25.25%	<0.001	
Cardiologist	2.11	1.97	1.68	1.01	0.010	01:17	02:49	00:49	01:59	-36.68%	0.044	
Gynecologist	1.83	1.59	1.55	1.38	0.003	00:54	02:27	00:43	02:20	-19.92%	0.222	
Hearing test	1.89	1.72	1.59	1.03	<0.001	00:59	02:10	00:49	01:45	-16.90%	0.042	
Ophthalmologist	1.60	1.24	1.80	1.76	<0.001	00:34	01:46	00:29	01:18	-13.10%	0.245	
Ophthalmology	1.97	1.71	1.71	1.36	<0.001	00:54	01:59	00:37	02:23	-32.32%	<0.001	
Physician	2.54	2.61	1.79	1.60	<0.001	01:15	03:20	00:34	01:38	-54.82%	<0.001	
Review with cardiologist	1.70	1.41	1.61	0.83	0.370	00:38	01:35	00:26	01:28	-30.59%	0.115	
Spirometry	2.85	2.54	1.45	1.16	<0.001	00:43	01:35	00:32	01:32	-25.73%	0.001	

Impact of SCPS - Simulation

Table 3. Overall effects of the SCPS in simulations

Call time	Macro-lev	el wait (min)	Micro-level > 20 min	Operating hours	
(min)	Mean	std	(%)		
6.94	101.18	49.52	14.10%	6.95	
4.87	102.06	54.25	12.76%	6.77	
	Call time (min) 6.94 4.87	Call time (min) Macro-lev Mean 6.94 101.18 4.87 102.06	Call time (min) Macro-level wait (min) Mean std 6.94 101.18 49.52 4.87 102.06 54.25	Macro-level wait (min) Micro-level > 20 min (%) Mean std Micro-level > 20 min (%) 6.94 101.18 49.52 14.10% 4.87 102.06 54.25 12.76%	

Impact of IT on Macro-Level Waits

Observation 1. (Impact of ACRS on Macro-Level Wait)

The ACRS redistributes the wait among wait-for-routing and wait-for-server times but *does not shorten* the total wait.

Wait-for-routing	Wait-for-servers	
Wait-for-routing		Wait-for-servers

Observation 2. (Impact of SCPS on Macro-Level Wait)

The SCPS reduced calling frequencies and call times, but the reduction had *negligible impact* on improving waits.

Dynamics of Local Micro-Level Measures

Observation 3.

Under the current routing and priority policies, the micro-level performance measures, wait-for-server and the probability of excessive waits per station, increase as the service process progresses.

RENMIN

Unintended Idleness (UI)

- BUSINESS SCHOOL Expert in Chines
- Unintended idleness (UI): both customer and server are waiting unproductively.
- Server UI
 - The probability of each server to experience UI.
 - Average server UI are 37.83% and 40.46% in manually- and auto-routed days.
- Customer UI
 - The percentage of customers whose waiting could be reduced by delaying their routing decisions by a few minutes.
 - Probability that routing decisions could be improved if the decisions are delayed for 3 minutes is 2.92% and 3.86% in manually- and auto-routed days.

Observation 4.

Postpone routing decisions \rightarrow buffer strategy

The ACRS's immediacy may lead to information loss for decision-making, which reduces the system's flexibility and causes unintended idleness for both servers and customers.

Outline

Impact of IT on open-shop networks:

- Negligible impact on macro-level wait.
- Deterioration of micro-level waits:
 - FCFS priority policy
 - o Immediacy of ACRS

System-level priority policies

Postpone routing decisions
 2022/3/22

Stylized Model

Two-Station Open-Shop Network

- Deterministic service times: $1/\mu$, $1/k\mu$, k > 1
- N Customers
- Dispatcher's routing decision: x customers route AB
- Performance measures
 - Macro-level: total wait
 - Micro-level:
 - Wait at last (second) stations
 - Percentage of excessive waits at stations
- Priority policy: station-level FCFS vs. advanced customer priority (ACP) policy

FCFS Priority Policy

Proposition 1. [Macro-level total wait under the FCFS policy]

Given a routing policy of x AB customers and N - x BA customers. customers' average total wait in the network is

$$t_F(x) = \begin{cases} \frac{N-1}{2\mu} & \text{if } x = 0\\ \frac{-(1+k)x^2 + (2N-k+1)x - N(2-(N-1)k)}{2N\mu k} & \text{if } 1 \le x \le \frac{N-1}{k} \\ \frac{x^2 + (3k-2N-1)x + (k^2-k+1)N^2 + (1-2k-k^2)N}{2N\mu k(k-1)} & \text{If } \frac{N-1}{k} \le x \le N-k \\ \frac{kN^2 - (2+k)N + 2x}{2N\mu k} & \text{If } x > N-k \end{cases}$$

where the error term $\varepsilon = -\frac{(k-1)a^2 + (2N-2x-k-1)a}{2\mu k} - \frac{(N-x)(N-x-k-1)}{2k\mu(k-1)}$ and $a = \left\lfloor \frac{N-x-1}{k-1} \right\rfloor$.

Proposition 2. [Micro-level wait under the FCFS policy]

Given a routing policy of x AB customers and N - x BA customers,

(i) Average station-level waits at customers' first and second stations are $t_{F,1}(x) = \frac{(k+1)x^2 + (1-k-2N)x + N(N-1)}{2Nku}$ and

$$t_{F,2}(x) = \begin{cases} \frac{(N-1)(k-1)}{2k\mu} & \text{if } x = 0\\ \frac{-2(1+k)x^2 + 4Nx + N^2k - N - Nk - N^2}{2N\mu k} & \text{if } 1 \le x \le \frac{N-1}{k}\\ \frac{(N-x)\left((k^2 - 2)x - (1-N)k^2 - (2N+1)k + 2N\right)}{2N\mu k(k-1)} + \frac{\varepsilon}{N} & \text{If } \frac{N-1}{k} \le x \le N-k\\ \frac{N-x}{2N\mu k}\left((k+1)x - (N+k-Nk+1)\right) & \text{If } x > N-k \end{cases}$$

(ii) The percentage of station-level excess waits $p_F(x, L)$ is nondecreasing in x for $x < \frac{X_1}{k}$ or $x \ge X_1$, and nonincreasing in x for $\frac{X_1}{k} \le x < X_1$, where $X_1 \equiv N - k\mu L - 1$.

2022/3/22

Advanced Customer Priority Policy

Proposition 3. [Macro-level total wait under the ACP policy]

Given a routing policy of x AB customers and N - x BA customers, for $k \in \{2,3,...\}$, customers' average total wait in the network is

$$(x) = \begin{cases} \frac{N-1}{2\mu} & \text{if } x = 0\\ \frac{kN^2 - (2+k)N + 2x}{2N\mu k} & \text{if } 1 \le x \le N \end{cases}$$

Proposition 4. [Micro-level wait under the ACP policy]

Given a routing policy of x AB customers and N - x BA customers,

(i) Average station-level waits at customers' first and second stations are

$$t_{A,1}(x) = \begin{cases} \frac{N(N-1)}{2Nk\mu} & \text{if } x = 0\\ \frac{(1-k)x^2 + (k-1)(2N+1)x + (N+1)(N-2k)}{2N\mu k} & \text{if } 1 \le x < N-k \\ \frac{(1-k)x^2 + (k-2N+2Nk+1)x + N(N-2k-1)}{2N\mu k} & \text{if } N-k \le x \le N \end{cases} \quad \text{and } t_{A,2}(x) = \begin{cases} \frac{(N-1)(k-1)}{2k\mu} & \text{if } 1 \le x < N-k \\ \frac{(k-1)x^2 + (2N-k-2Nk+3)x + 2k-3N+N^2k + Nk-N^2}{2N\mu k} & \text{if } 1 \le x \le N-k \\ \frac{(k-1)(N^2 - 2Nx + N+x^2 - x)}{2N\mu k} & \text{if } N-k+1 \le x \le N \end{cases}$$

(ii) The percentage of station-level excess waits $p_A(x, L)$ has the following properties:

- For $L \leq \frac{N-1}{k\mu}$, $p_A(x, L)$ is weakly decreasing in x for $x \leq X_1 + 1$, and weakly increasing in x for $x > X_1 + 1$.
- For $L > \frac{N-1}{k\mu}$, $p_A(0,L) > p_A(x,L)$, and $p_A(x,L)$ is weakly increasing in x for $x \ge 1$.

 t_A

Comparison: FCFS vs. ACP

Proposition 5. [Comparison of macro- and micro-level waits under FCFS and ACP policies]

Suppose the population size is large (i.e., $N > k^2 + 2k - 3$), comparing to the FCFS policy, the ACP policy weakly reduces

- (i) The average macro-level wait: $t_A(x) \le t_F(x) \forall x$.
- (ii) The average wait at the second (last) station: $t_{A,2}(x) \le t_{F,2}(x) \forall x$.
- (iii) The micro-level approximated percentage of excessive waits, $\tilde{p}_A(x,L) \leq \tilde{p}_F(x,L)$,
 - Under any routing decision, when k = 2 and $L \le \frac{N-1}{2\mu}$, or when $k \ge 3$ and $\frac{k^2-2}{k\mu} \le L \le \frac{N-k}{k\mu}$ or $\frac{(k-1)N-k}{k\mu(k-1)} \le L \le \frac{N-1}{2\mu}$.
 - Under certain routing decision, when $k = 2, x \ge \mu L + 1$ for $L > \frac{N-1}{2\mu}$; when $k \ge 3, x \le \tilde{X}_1$ and $x \ge \tilde{X}_2$ for $L < \frac{k-1}{\mu}$, $\tilde{X}_0 \le x \le \tilde{X}_1$ and $x \ge \tilde{X}_2$ for $\frac{k-1}{\mu} < L < \frac{k^2-2}{k\mu}$, $x \ge \tilde{X}_2$ for $\frac{N-k}{k\mu} < L < \frac{(k-1)N-k}{k\mu(k-1)}$, $x \le \tilde{X}_3$ and $x \ge \mu L + 1$ for $\frac{N-1}{2\mu} < L < \frac{(k-1)(N-1)}{k\mu}$, $x \ge \mu L + 1$ for $L \ge \frac{(k-1)(N-1)}{k\mu}$, where $\tilde{X}_0 \in \left(1, \frac{X_1}{k}\right), \tilde{X}_1 \in \left(\frac{X_1}{k}, X_1\right], \tilde{X}_2 \in (X_1, N \mu L]$, and $\tilde{X}_3 \in (1, N \mu L]$.

Macro-Level: Total Wait

Advanced customer priority (ACP) policy outperforms the FCFS policy from the macro perspective.

2022/3/22

Local Micro-Level: Wait at Last Station

Advanced customer priority (ACP) policy reduces customers' waits at their last station.

Global Micro-Level: Excessive Waits

Advanced customer priority (ACP) policy reduces the percentage of station-level excessive waits under certain circumstances.

Outline

Impact of IT on open-shop networks:

- Negligible impact on macro-level wait.
- Deterioration of micro-level waits:
 - FCFS priority policy
 - Immediacy of ACRS

AB customers

Two-Station Open-Shop Network

- ACP outperforms FCFS
- Buffer strategy

Data-driven simulation

- $k\mu$ System-level priority policies
 - Postpone routing decisions
 2022/3/22

Simulation: Macro-Level Wait

	Performance Measures							
Drievity	Macro-level wait (min)							
Priority Policies			r-routing	Wait-for-server		Total		
	Mean	Std	Mean	Std	Mean	Std		
Station-level	First-come-first-served (FCFS)	11.38	10.10	103.37	54.18	114.75	58.17	
Advanced customers priority	Longest system time first (LST)	11.38	10.10	99.96	56.47	111.34	58.29	
Advanced customers priority (ACP) policy	Shortest expected remaining processing time first (SEPRT)	11.38	10.10	90.88	72.41	102.26	75.97	

ACP policies effectively shorten the average overall wait.

Simulation: Micro-Level Wait

ACP policies reduce delays as customers progress towards the end of their visits.

Simulation: Buffer Strategy

Customers are routed to stations only if stations' queue lengths are below the buffer value.

ACP policies with finite buffer improve both macro- and micro-level performance measures.

Summary

Impact of IT on open-shop networks:

- Negligible impact on macro-level wait.
- Deterioration of micro-level waits:
 - FCFS priority policy
 - Immediacy of ACRS

AB customers

Two-Station Open-Shop Network

- ACP outperforms FCFS
- Buffer strategy

Data-driven simulation: priority-based buffer strategy improves both macro- and microlevel measurements

- System-level priority policies
- Postpone routing decisions
 2022/3/22